Math 218D Problem Session

Week 4

1. Subspaces?

- a) Not a subspace, since it doesn't contain (0, 0, 0).
- b) A subspace, since it is the solution set of a homogeneous linear equation.
- c) Not a subspace, since it doesn't contain (0, 0, 0).
- **d)** A subspace, since it is the left-null space of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$
- e) Not a subspace, since it doesn't contain (0,0,0).
- f) A subspace, since

 $\{(x,y) \in \mathbf{R}^2 \colon x^2 + 2xy + y^2 = 0\} = \{(x,y) \in \mathbf{R}^2 \colon (x+y)^2 = 0\} = \{(x,y) \in \mathbf{R}^2 \colon x+y = 0\}.$

2. The fundamental subspaces I

- **a)** The null space and left null space are points, while the row and column spaces are all of \mathbf{R}^2 .
- **b)** $\dim(\operatorname{Nul}(A)) + \dim(\operatorname{Row}(A)) = 2$

3. The fundamental subspaces II

a) The spanning sets are Row(*A*) = Span
$$\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
, Col(*A*) = Span $\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\}$, Nul(*A*) = Span $\left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$, Nul(*A^T*) = Span $\left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$, although other answers are possible.

- b) Draw the lines spanned by the vectors of a).
- c) $\dim(\operatorname{Nul}(A)) + \dim(\operatorname{Row}(A)) = 2.$
- **d)** The lines Nul(A) and Row(A) are perpendicular. The lines Col(A) and Nul(A^T) are perpendicular.

4. The fundamental subspaces III

- **a)** The row space Row(A) is a subspace of \mathbf{R}^3
- **b)** The null space Nul(A) is a subspace of \mathbf{R}^3
- **c)** The column space Col(A) is a subspace of \mathbf{R}^2
- **d)** The left-null space $Nul(A^T)$ is a subspace of \mathbf{R}^2
- e) The column space is the line spanned by $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$, and the left-null space is the line spanned by $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

f) The row space is spanned by the vectors (1, -1, 2) and (-2, 2, -4), but these are scalar multiples of each other, so the row space is a line. The null space can be found via RREF: rref $(A) = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$. The free variables are *y* and *z*, and the parametric form is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$. Therefore the null space is a plane in \mathbb{R}^3 .

g) Row(A) = Span{(1, -1, 2)}

h)
$$Nul(A) = Span\{(1, 1, 0), (-2, 0, 1)\}$$

i) We consider the matrix $B = \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$, whose column space equals Nul(A). We

find an equation for the column space of *B* by finding the REF of $\begin{pmatrix} 1 & -2 & b_1 \\ 1 & 0 & b_2 \\ 0 & 1 & b_3 \end{pmatrix}$, and finding the equation which makes the system consistent. The PEE of this

and finding the equation which makes the system consistent. The REF of this augmented matrix is

$$\begin{pmatrix} 1 & -2 & b_1 \\ 0 & 2 & b_2 - b_1 \\ 0 & 0 & b_1 - b_2 + 2b_3 \end{pmatrix}.$$

The equation that (b_1, b_2, b_3) must satisfy to be in the column space of *B* (and hence the null space of *A*) is $b_1 - b_2 + 2b_3 = 0$. In other words, the equation for the plane Nul(*A*) is

$$x - y + 2z = 0.$$

j) The coefficients of the equation are (1, -1, 2). This is the same as the vector which spanned Row(*A*) (you may have gotten a scalar multiple of the vector spanning Row(*A*) instead.) The means that every vector in the plane is perpendicular to the vector (1, -1, 2), i.e. that the plane has *normal vector* (1, -1, 2). In other words, *the null space is orthogonal to the row space*. We will discuss the orthogonality of subspaces in more detail in Week 6.