Math 218D Problem Session

Week 5

1. Linear (in)dependence

- **a)** Are the vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ linearly independent? If not, write down a linear dependence relation.
- **b)** Are the vectors $\binom{1}{1}$, $\binom{1}{-1}$, $\binom{3}{2}$ linearly independent? If not, write down a linear dependence relation.

c) What is the dimension of Span
$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
? Why?

- **d)** Consider 2 linearly independent vectors $u, v \in \mathbb{R}^n$. Show that the two vectors u + v, u v are linearly independent.
- e) Consider 3 vectors $u, v, w \in \mathbb{R}^n$. Show that the three vectors u + v, u + 2v w, v w are linearly *dependent*.
- f) Show that the vectors

$$\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-2\\-3\\-4 \end{pmatrix}, \begin{pmatrix} 2\\3\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

are linearly dependent, by writing down a linear dependence relation among them.

Hint: Write down the matrix *A* whose columns are these vectors, and find a non-zero vector in Nul(*A*). Why does this solve the question?

2. Bases from an LU decomposition

Suppose that you have an $\overline{A} = LU$ decomposition, where

$$U = \begin{pmatrix} 1 & -1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

but you don't know *L* or *A*.

- **a)** Which of the subspaces Row(*A*), Col(*A*), Nul(*A*), Nul(*A*^{*T*}) can you find a basis for? If you *can* find a basis, do.
- **b)** Which of the subspaces Row(*A*), Col(*A*), Nul(*A*), Nul(*A*^{*T*}) can you find the dimension of? If you *can* find a dimension, do.

3. Computing all of the bases at once

We will find a basis for each of the four fundamental subspaces of the 7×10 matrix

	(-2)	-2	1	2	-4	-4	1	-8	9	1)
A =	-4	-3	0	0	11	-5	-9	5	-5	3
	—5	-5	1	3	-1	-8	-3	-10	8	6
A =	3	3	-1	-2	2	5	0	9	-9	-4
	4	4	0	1	-11	4	8	-4	7	-10
	2	2	0	-3	5	4	1	6	-3	1
	3	3	0	-3	3	6	2	8	-5	-1

by having a computer do Gauss–Jordan elimination one time. To do this, we will compute the RREF of the matrix $(A \mid I_7)$. The RREF is of the form $(U \mid E)$, and EA = U.

Load up linalg.js in your browser, and open a Javascript console. Copy this code to initialize the matrix:

```
A = mat( [-2,-2, 1, 2, -4, -4, 1, -8, 9, 1], [-4,-3, 0, 0, 11, -5, -9, 5, -5, 3], [-5, -5, 1, 3, -1, -8, -3, -10, 8, 6], [3, 3, -1, -2, 2, 5, 0, 9, -9, -4], [4, 4, 0, 1, -11, 4, 8, -4, 7, -10], [2, 2, 0, -3, 5, 4, 1, 6, -3, 1], [3, 3, 0, -3, 3, 6, 2, 8, -5, -1])
```

Now augment by the identity:

```
// Create a blank 7x(10+7) matrix
Aug = Matrix.zero(7, 10+7);
    // Put A in the left half
Aug.insertSubmatrix(0, 0, A);
    // Augment with 7x7 identity matrix
Aug.insertSubmatrix(0, 10, Matrix.identity(7));
    // Check that you got the right thing
console.log(Aug.toString(0));
```

Finally, compute the RREF:

console.log(Aug.rref().toString(1));

- a) The non-zero rows of *U* form a basis for Row(*A*). What are they?
- **b)** The columns of *U* with pivots are *not* a basis of Col(*A*). However, the corresponding columns of *A* do form a basis for Col(*A*). What is a basis of Col(*A*)?
- c) You can use U (the RREF of A) to find a basis of Nul(A) = Nul(U). What is a basis of Nul(A)?
- **d)** The bottom row of *U* is all zero. Look at the bottom row of *E*. This row forms a basis of $Nul(A^T)$ what is it?

4. Full row/column rank

Let *A* be an $m \times n$ matrix. Which of the following are equivalent to the statement "*A* has full column rank"?

- **a)** $Nul(A) = \{0\}$
- **b)** A has rank m
- c) The columns of *A* are linearly independent
- **d**) dim Row(A) = n
- **e)** The columns of A span \mathbf{R}^m
- **f)** A^T has full column rank

Which of the following are equivalent to the statement "A has full row rank"?

- a) $\operatorname{Col}(A) = \mathbf{R}^m$
- **b)** A has rank m
- **c)** The columns of *A* are linearly independent
- **d)** dim Nul(A) = n m
- **e)** The rows of A span \mathbf{R}^n
- **f)** A^T has full column rank