Math 218D Problem Session

Week 7

1. Orthogonal matrices

A **orthogonal matrix** is a *square* matrix *Q* whose columns form an ortho*normal* set. Alternately, it is a square matrix *Q* such that $Q^T Q = I_n$.

\n- **a)**
$$
Q = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$
 is not an orthogonal matrix, since $Q^T Q = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
\n- **b)** $Q = \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix}$ is not an orthogonal matrix, since $Q^T Q = \begin{pmatrix} 8 & 0 \\ 0 & 2 \end{pmatrix}$.
\n- **c)** $Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is an orthogonal matrix, since $Q^T Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
\n

2. Rotation and reflection

$$
R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.
$$

\n**a)** $R_{\theta}^{T}R_{\theta} = \begin{pmatrix} \cos(\theta)^{2} + \sin(\theta)^{2} & 0 \\ 0 & \cos(\theta)^{2} + \sin(\theta)^{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$
\n**b)** $R_{\pi/6} = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$, so $R_{\pi/6}(1,0) = (\sqrt{3}/2, 1/2)$ and $R_{\pi/6}(1,1) = (\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}+1}{2})$.

c) The angle between $(1,0)$ and $(1,1)$ is $\pi/4$. We want to confirm that the angle The angle between (1, 0) and (1, 1) is π ,
between $u = (\sqrt{3}/2, 1/2)$ and $v = (\frac{\sqrt{3}-1}{2})$ between $u = (\sqrt{3}/2, 1/2)$ and $v = (\frac{\sqrt{3}-1}{2}$ is $\pi/4$. We use the formula cos(θ) = $\frac{u \cdot v}{\|u\| \|v\|}$ (note that this is not the same θ as the variable from the rotation matrix). Compute that $||u|| = 1$, $||v|| = \sqrt{2}$, and $u \cdot v = 1$. Then $cos(\theta) = \sqrt{2}/2$, so $\theta = \pi/4$.

Consider a line $L = \text{Span}\{v\} \subset \mathbb{R}^3$, and the orthogonal complement plane $V = L^{\perp}$. The **reflection matrix** for **reflection across** *V* is the orthogonal matrix

$$
Q = I_3 - 2P_L,
$$

where *P^L* is the projection matrix for *L*.

d) The projection matrix is $P_L = \frac{(0,1,0)(0,1,0)^T}{(0,1,0)\cdot(0,1,0)}$ $(0\ 0\ 0)$ 0 1 0 $\begin{pmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$, so *Q* = $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ $0 -1 0$ $\begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix}$.

The line *L* is the *y*-axis, and the plane *V* is the *xz*-plane. The projection of $(1, 1, 0)$ on to the *y*-axis is $(0, 1, 0)$. The reflection of $(1, 1, 0)$ across the *xz*plane, *Q*(1, 1, 0), is (1,−1, 0).

e) $Q^T Q = (I_3 - 2P_L)^T (I_3 - 2P_L) = (I_3^T - 2P_L^T)$ L_L^T $($ $I_3 - 2P_L) = I_3 - 2P_L^T - 2P_L + 4P_L^T$ $L^T P_L$. Since $P_L^T = P_L$, this becomes $I_3 - 4P_L + 4(P_L)^2$. Since $P_L^2 = P_L$, this becomes $I_3 - 4P_L + 4P_L = I_3$. Therefore $Q^T Q = I_3$.

3. Gram-Schmidt and *QR*

The vectors
$$
v_1 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}
$$
, $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ are a basis for a plane $V \subset \mathbb{R}^3$. Set
\n $u_1 = v_1$, $u_2 = v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1$.
\n**a)** $u_1 = (1, 2, -2), u_2 = (1, 1, 1) - \frac{(1, 1, 1) \cdot (1, 2, -2)}{(1, 2, -2) \cdot (1, 2, -2)} = (1, 1, 1) - \frac{1}{9} (1, 2, -2) = (8/9, 7/9, 11/9)$.
\nThen $u_1/||u_1|| = \frac{1}{3} (1, 2, -2)$, and $u_2/||u_2|| = \frac{1}{\sqrt{234}} (8, 7, 11)$. The vectors are unit length, and $(1, 2, -2)$ is orthogonal to $(8, 7, 11)$, so these two vectors are orthonormal.
\n**b)** $Q = \begin{pmatrix} 1/3 & 8/\sqrt{234} \\ 2/3 & 7/\sqrt{234} \\ -2/3 & 11/\sqrt{234} \end{pmatrix}$, and $A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ -2 & 1 \end{pmatrix}$.
\n $R = Q^T A = \begin{pmatrix} 1/3 & 2/3 & -2/3 \\ 8/\sqrt{234} & 7/\sqrt{234} & 11/\sqrt{234} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1/3 \\ 0 & 26/\sqrt{234} \end{pmatrix}$.
\nYou could note that $\sqrt{234} = 3\sqrt{26}$, to simplify this to $R = \begin{pmatrix} 3 & 1/3 \\ 0 & \sqrt{26}/3 \end{pmatrix}$.
\nYou can check $QR = \begin{pmatrix} 1/3 & 8/\sqrt{234} \\ 2/3 & 7/\sqrt{234} \\ -2/3 & 11/\sqrt{234} \end{pmatrix} \begin{$

c) If $A = QR$, then $Q^T A = Q^T QR$. Since $Q^T Q = I$, this simplifies to $Q^T A = R$.

4. Least squares

$$
A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ -2 & 1 \end{pmatrix}
$$
, the heat-squares equation is $A^T A \hat{x} = A^T \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.
\n**a)** $A^T A = \begin{pmatrix} 9 & 1 \\ 1 & 3 \end{pmatrix}$ and $A^T \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$. The RREF of $\begin{pmatrix} 9 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix}$ is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 9/26 \\ 49/26 \end{pmatrix}$.
\nTherefore $G = 0/25$, $D = 40/25$.

Therefore *C* = 9*/*26, *D* = 49*/*26.

b) We plot the data points and the least-squares line $y = \frac{9}{26}x + \frac{49}{26}$. It may help to note that this line has *x*-intercept −49*/*9 ≈ −5.44 and *y*-intercept 49*/*26 ≈ 1.88

c) $A\hat{x} =$ $(1 \ 1$ 2 1 $\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 9/26 \\ 49/26 \end{pmatrix} =$ 58*/*26 65*/*26 58/26)
65/26). The numbers in the vector Ax² are the
31/26)

vertical distances between the data points and the best-fit line.

- **d)** The error $||A\hat{x}-(3,2,1)||^2$ equals $||((58-78)/26,(65-52)/26,(31-26)/26)||^2 = \frac{1}{676}(20^2+13^2+5^2) = \frac{400+169+25}{676} = \frac{594}{676} \approx 0.879$. p
- **e**) We solve $R\hat{x} = Q^T(3, 2, 1)$, where $R =$ 3 1*/*3 0 26*/* $\binom{3}{\sqrt{234}}$ and *Q* = $\sqrt{ }$ \mathbf{L} 1*/*3 8*/* 234 2*/*3 7*/* \mathbf{v} 234 −2*/*3 11*/* v: 234 λ \cdot First, $Q^{T}(3,2,1) = \begin{pmatrix} 1/3 & 2/3 & -2/3 \\ 8/1/234 & 7/1/234 & 11/1/23 \end{pmatrix}$ 8*/* $\frac{1}{2}$ 234 7*/* $\frac{2}{\pi}$ 234 11*/* $\binom{2/3}{\sqrt{234}}$ (3, 2, 1) = (5/3, 49/ p 234). We find the RREF of $\begin{pmatrix} 3 & 1/3 \\ 0 & 36/234 \end{pmatrix}$ 40/ $\begin{pmatrix} 5/3 \\ 234 \end{pmatrix}$ 0 26*/* p 234 49*/* $\left(\frac{5}{3}\right)$. We can immediately get rid of all the denominators by row scaling: $\begin{pmatrix} 9 & 1 & 5 \ 0 & 26 & 49 \end{pmatrix}$. Then $\begin{pmatrix} 9 & 0 & 81/26 \ 0 & 26 & 49 \end{pmatrix}$. Therefore $C = 9/26$, $D = 49/26$.

5. Another Gram–Schmidt

 $v_1 = (1, 1, 0), v_2 = (1, 0, 1), v_3 = (0, 1, 1)$ **a)** We do Gram–Schmidt: $u_1 = (1, 1, 0),$ $u_2 = (1, 0, 1)$ – $(1, 1, 0) \cdot (1, 0, 1)$ $\frac{(1, 1, 0) \cdot (1, 1, 0)}{(1, 1, 0) \cdot (1, 1, 0)}$ $=(1, 0, 1)-\frac{1}{2}$ $\frac{1}{2}(1,1,0)$ = (1*/*2,−1*/*2, 1), $u_3 = (0, 1, 1)$ – $(1, 1, 0) \cdot (0, 1, 1)$ $(1, 1, 0) \cdot (1, 1, 0)$ $(1, 1, 0)$ − (1*/*2,−1*/*2, 1)·(0, 1, 1) (1*/*2,−1*/*2, 1)·(1*/*2,−1*/*2, 1) (1*/*2,−1*/*2, 1) $=(0,1,1)-\frac{1}{2}$ $\frac{1}{2}(1,1,0)-\frac{1}{3}$ $rac{1}{3}(1/2,-1/2,1)$ = (−2*/*3, 2*/*3, 2*/*3).

b) The orthonormal vectors are $\frac{1}{\sqrt{2}}$ $\frac{1}{2}(1,1,0),\frac{1}{\sqrt{2}}$ $\frac{1}{6}(1,-1,2),\, \frac{1}{\sqrt{2}}$ $\frac{1}{3}(-1,1,1)$. Therefore

$$
A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } Q = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}.
$$

We compute

$$
R = Q^{T}A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{6} & -1/\sqrt{6} & 2/\sqrt{6} \\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 2/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 3/\sqrt{6} & 1/\sqrt{6} \\ 0 & 0 & 2/\sqrt{3} \end{pmatrix}.
$$

c) Consider the vector $b = (1, 1, 1)$. There are three equations

$$
b \cdot u_1 = (x_1u_1 + x_2u_2 + x_3u_3) \cdot u_1,
$$

\n
$$
b \cdot u_2 = (x_1u_1 + x_2u_2 + x_3u_3) \cdot u_2,
$$

\n
$$
b \cdot u_3 = (x_1u_1 + x_2u_2 + x_3u_3) \cdot u_3.
$$

This simplifies to

$$
b \cdot u_1 = ||u_1||^2 x_1,
$$

\n
$$
b \cdot u_2 = ||u_2||^2 x_2,
$$

\n
$$
b \cdot u_3 = ||u_3||^2 x_3.
$$

since u_1 , u_2 , u_3 are an orthogonal set of vectors.

Recall that $u_1 = (1, 1, 0)$, $u_2 = (1/2, -1/2, 1)$, $u_3 = (-2/3, 2/3, 2/3)$. We can solve for x_1, x_2 , and x_3 now:

$$
x_1 = \frac{b \cdot u_1}{||u_1||^2} = \frac{2}{2} = 1,
$$

\n
$$
x_2 = \frac{b \cdot u_2}{||u_2||^1} = \frac{1}{(3/2)} = 2/31/3,
$$

\n
$$
x_3 = \frac{b \cdot u_3}{||u_3||^2} = (2/3)/(4/3) = 1/2.
$$

In other words, $(1, 1, 1) = (1, 1, 0) + \frac{2}{3}(1/2, -1/2, 1) + \frac{1}{2}(-2/3, 2/3, 2/3).$

d) How you could instead solve for these scalars using the formula $QQ^T = P_{\mathbf{R}^3}$ I_3 ? First, compute $a =$ a_1 $a₂$ *a*3 ! $= Q^T b$. The formula $QQ^T = I$ implies that $Qa =$ $Q(Q^T b) = b$. Since *Q* has columns $u_1 / ||u_1||$, $u_2 / ||u_2||$, $u_3 / ||u_3||$, this implies that

$$
b = Qa = a_1 \frac{u_1}{||u_1||} + a_2 \frac{u_2}{||u_2||} + a_3 \frac{u_3}{||u_3||}.
$$

In other words,

$$
b = \frac{a_1}{||u_1||}u_1 + \frac{a_2}{||u_2||}u_2 + \frac{a_3}{||u_3||}u_3.
$$

Therefore, if you compute $a = Q^Tb$, and then $\frac{a_1}{||u_1||}$, $\frac{a_2}{||u_2||}$ $\frac{a_2}{\|u_2\|}$, $\frac{a_3}{\|u_3\|}$ $\frac{u_3}{\| u_3 \|}$, you would find scalars which make b into a linear combination of u_1, u_2 , and u_3 .