Math 218D Problem Session

Week 8

1. Some quick determinants

a) det
$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} = 0$$
 b) det $\begin{pmatrix} 1 & 10 & 17 \\ 0 & 2 & \pi \\ 0 & 0 & 3 \end{pmatrix} = 6$ c) det $\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} = 5$
d) det $\begin{pmatrix} 0 & 1 \\ 5 & 0 \end{pmatrix} = -5$ e) det $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = 1$ f) det $\begin{pmatrix} 0 & 0 & 2 \\ 3 & 0 & 0 \\ 0 & 4 & 0 \end{pmatrix} = 24$
g) det $\begin{pmatrix} 1 & 0 & 0 \\ 7 & 3 & 0 \\ 5 & 5 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 & 2 \\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{pmatrix} = 18$ h) det $\begin{pmatrix} 2 & 5 \\ 1 & 2 \end{pmatrix}^{20} = (-1)^{20} = 1$

2. Some determinants with variables

- **a)** $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. $\det(A) = -2$, $\det(A^2) = \det(A)^2 = 4$, $\det(A)^{-1} = -\frac{1}{2}$, $\det(A xI_2) = \det((1-x \ 2 \ 3 \ 4-x)) = x^2 5x 2$. The equation $x^2 5x 2 = 0$ has solutions $x = \frac{5\pm\sqrt{33}}{2}$.
- **b)** Using Sarrus' scheme, det $\begin{pmatrix} 1-x & 1 & 1\\ 2 & 2-x & 2\\ 1 & 2 & 3-x \end{pmatrix} = (1-x)(2-x)(3-x) (1-x)2 \cdot 2 + 1 \cdot 2 \cdot 1 1 \cdot 2 \cdot (3-x) + 1 \cdot 2 \cdot 2 1 \cdot (2-x) \cdot 1.$ Simplifying, which is admittedly tedious, gives det $\begin{pmatrix} 1-x & 1 & 1\\ 2 & 2-x & 2\\ 1 & 2 & 3-x \end{pmatrix} = -x^3 + 6x^2 - 4x$. This is a degree 3 polynomial.

3. More cofactor expansion

a) We use cofactor expansion three times:

$$\det\left(\begin{pmatrix} 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3\\ 1 & 2 & 3 & 4\\ 0 & -1 & -2 & 1 \end{pmatrix}\right) = 3 \det\left(\begin{pmatrix} 0 & 0 & 1\\ 1 & 2 & 3\\ 0 & -1 & -2 \end{pmatrix}\right) = 3 \cdot 1 \cdot \det\left(\begin{pmatrix} 1 & 2\\ 0 & -1 \end{pmatrix}\right) = -3.$$

b)
$$\det\left(\begin{pmatrix} 1 & 5 & 0 & 0\\ 0 & x & 0 & 0\\ 0 & 10 & 1 & 0\\ 0 & -1 & 0 & y \end{pmatrix}\right) = xy.$$

c) First,

Then,

$$\det\left(\begin{pmatrix} * & * & * & * \\ * & * & * & * \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \end{pmatrix}\right) = *\det\left(\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 0 \end{pmatrix}\right) = 0.$$

As the 5×5 determinant is a sum of two 4×4 determinants, and each of these is zero, the determinant is zero.

d) The last three columns of this matrix are contained in the (x_1, x_2) -plane. Three vectors in a plane must be linearly dependent. Any matrix with linearly dependent columns is not invertible, hence has determinant equal 0.

4. Signs of determinants

- a) The vector v is counterclockwise from u. The sign of the determinant is +1.
- **b)** The vector v is clockwise from u. The sign of the determinant is -1.
- c) The vectors u = (0, 1, 0), v = (1, 1, 0), w = (1, 1, 1) are in LHO.
- **d)** The vectors u = (1, 1, 0), v = (0, 1, 0), w = (1, 1, 1) are in RHO.
- e) The sign of the determinants of

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

are -1 and +1.

f) The sign of a 3×3 determinant is +1 if the rows are in RHO, and -1 if the rows are in LHO.

5. A recursion

Consider the $n \times n$ matrix C_n with 1's above and below the diagonal:

$$C_{1} = \begin{pmatrix} 0 \end{pmatrix}, C_{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, C_{3} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, C_{4} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \dots$$

- **a)** The determinants of C_1 , C_2 , C_3 , and C_4 are 0, -1, 0, 1.
- **b)** I'll explain for C_4 , but the general pattern is the same. We first do cofactor expansion in the first row:

$$\det(C_4) = \det\left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}\right) = -1 \cdot \det\left(\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}\right).$$

We then do cofactor expansion in the first column:

$$-1 \cdot \det\left(\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \right) = -1 \det\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) = -\det(C_2).$$

In other words, we have removed the first and second rows and columns of our original matrix C_4 , and are left with C_2 (and a sign).

c) Since $det(C_2) = -1$, the equation $det(C_n) = det(C_{n-2})$ implies that

$$\det(C_{2k}) = (-1)^{k-1} \det(C_2) = (-1)^k$$

Therefore $det(C_{10}) = det(C_{2\cdot 5}) = (-1)^5 = -1$.