Math 218D Problem Session

Week 9

1. Some simple examples

- a) The matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has characteristic polynomial $(\lambda 1)^2$, the only eigenvalue is $\lambda_1 = 1$, the λ_1 -eigenspace is \mathbf{R}^2 with basis {(1,0), (0,1)}, the matrix is diagonal and diagonalizable.
- **b)** The matrix $\begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ has characteristic polynomial $(\lambda 2)(\lambda + 2)$, the eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = -2$, the λ_1 -eigenspace is Span $\{(1,0)\}$ and the λ_2 -eigenspace is Span $\{(0,1)\}$, the matrix is diagonal and diagonalizable.
- c) The matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ has characteristic polynomial λ^2 , the only eigenvalue is $\lambda_1 = 0$, the λ_1 -eigenspace is \mathbf{R}^2 , the matrix is diagonal and diagonalizable.
- d) The matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ has characteristic polynomial $(\lambda 1)(\lambda + 1)$, the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = -1$, the λ_1 -eigenspace is Span{(1,1)} and the λ_2 -eigenspace is Span{(1,-1)}, the matrix is not diagonal but is diagonalizable.
- e) The matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ has characteristic polynomial $\lambda(\lambda-2)$, the eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 2$, the λ_1 -eigenspace is Span $\{(1, -1)\}$ and the λ_2 -eigenspace is Span $\{(1, 1)\}$, the matrix is not diagonal but is diagonalizable.
- f) The matrix $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ has characteristic polynomial $(\lambda 2)^2$, the only eigenvalue is $\lambda_1 = 2$, the λ_2 -eigenspace is Span{(1,0)}, the matrix is neither diagonal nor diagonalizable.
- g) The matrix $\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ has characteristic polynomial $\lambda^2 4\lambda + 5$. Since $4^2 4 \cdot 5 < 0$, this polynomial has no real root. This means it has no real eigenvalues, and cannot be diagonalized via real matrices. It is not diagonal.

2. A 2×2 diagonalization

Consider the matrix $A = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix}$.

- **a)** The characteristic polynomial is $\lambda^2 3\lambda + 2 = (\lambda 1)(\lambda 2)$
- **b)** The two eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 2$.
- c) A $\lambda_1 = 1$ eigenvector is (1, 1).
- **d)** A $\lambda_2 = 2$ eigenvector is (2, 3).
- e) $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}^{-1}.$
- f) It is not hard to "guess" that (1,2) = -(1,1) + (2,3), i.e. $c_1 = -1$, $c_2 = 1$. If you already computed the inverse $C^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$, you could also do $(c_1, c_2) = C^{-1}(1,2) = (3,-1) + 2(-2,1) = (-1,1)$. This means that $A^n(1,2) = A^n(-(1,1) + (2,3)) = -\lambda_1^n(1,1) + \lambda_2^n(2,3) = -(1,1) + 2^n(2,3)$.
- **g)** When *n* is very large, the ratio $\frac{||A^{n+1}(1,2)||^2}{||A^n(1,2)||^2} = \frac{(2 \cdot 2^{n+1}+1)^2 + (3 \cdot 2^{n+1}+1)^2}{(2 \cdot 2^n+1)^2 + (3 \cdot 2^n+1)^2}$ is approximately 4 (the +1's are negligible compared to the large 2^n terms). This means that the ratio $\frac{||A^{n+1}(1,2)||}{||A^n(1,2)||}$ is approximately 2.
- **h)** For any n, $||A^{n+1}(1,1)||/||A^n(1,1)||$ is not just approximately, but exactly, equal to 1.
- i) If you were given a random vector w, you would expect ||Aⁿ⁺¹w||/||Aⁿw|| to be approximately 2 when n is very large most vectors are not in the λ₁ = 1 eigenspace, and for any vector not in that eigenspace, the same logic as in g) would apply.

3. Traces and determinants

Recall that the trace Tr(A) is the sum of the diagonal entries of A.

- a) For example, for a), $\lambda_1 = 1$ and $\lambda_2 = 1$. Therefore $\operatorname{Tr}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 + 1 = 2$, while $\operatorname{det}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \cdot 1 = 1$. For a non-diagonal example, look at d) the eigenvalues are $\lambda_1 = 1, \lambda_2 = -1$, $\operatorname{Tr}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1 + (-1) = 0$ while $\operatorname{det}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1 \cdot (-1) = -1$.
- **b)** For any $n \times n$ matrix, the polynomial $p(\lambda) = \det(A \lambda I_n)$ can be factored as

$$p(\lambda) = (-1)^n (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

When you set $\lambda = 0$ in det $(A - \lambda I_n)$, you get det(A). When you set $\lambda = 0$ in $(-1)^n (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$, you get $(-1)^n (-\lambda_1) \cdots (-\lambda_n) = \lambda_1 \cdot \lambda_n$. Therefore det $(A) = \lambda_1 \cdot \lambda_n$.

c) The determinant det(*A*) has another product formula:

$$\det(A) = (-1)^k d_1 \cdots d_n,$$

when the *A* has REF with pivot entries d_1, \ldots, d_n , found using Gaussian elimination w/o row scaling and with *k* row swaps. Even though this formula looks quite similar to the formula of **b**), eigenvalues and pivots are not at all the same.

An example of a 2 × 2 matrix where the pivots d_1, d_2 are not the same as the eigenvalues λ_1, λ_2 is given by $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. This matrix has $p(\lambda) = \lambda^2 - \lambda - 1$, hence has eigenvalues $\lambda_1, \lambda_2 = \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$. But the REF, with one row swap, is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, with pivots 1, 1. This gives two different formula for the determinant det $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = -1 \cdot 1 = \frac{1+\sqrt{5}}{2} \cdot \frac{1-\sqrt{5}}{2}$.

d) For any $n \times n$ matrix, we will show that $\text{Tr}(A) = \lambda_1 + \cdots + \lambda_n$. We'll do the same strategy as in **b**), but the details are much trickier.

 $p(\lambda)$ -side: If you expand $p(\lambda) = (-1)^n (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$ into $p(\lambda) = (-1)^n \lambda^n + (?) \lambda^{n-1} + \cdots$, the coefficient of λ^{n-1} is $\lambda_1 + \cdots + \lambda_n$.

For example, $(-1)^3(\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3) = (-1)^3(\lambda^3 - (\lambda_1^2 + \lambda_2 + \lambda_3)\lambda^2 + (\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)\lambda - \lambda_1\lambda_2\lambda_3.$

det($A - \lambda I$)-side What is the coefficient of λ^{n-1} for det($A - \lambda I$)? Well, you have to think very carefully about the cofactor expansion, or really the formula you get when you do cofactor expansion n times, all the way to 1×1 matrices. The only term in the cofactor expansion which has a possibility of having a λ^{n-1} term is the product $(a_{11} - \lambda) \cdots (a_{nn} - \lambda)$, coming from the (1, 1)-cofactor n times.

For example, when n = 3,

$$\det \begin{pmatrix} (a_{11}-\lambda) & a_{12} & a_{13} \\ a_{21} & (a_{22}-\lambda) & a_{23} \\ a_{31} & a_{32} & (a_{33}-\lambda) \end{pmatrix} = (a_{11}-\lambda)\det \begin{pmatrix} (a_{22}-\lambda) & a_{23} \\ a_{32} & (a_{33}-\lambda) \end{pmatrix}$$
$$-a_{21}\det \begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33}-\lambda \end{pmatrix}$$
$$+a_{31}\det \begin{pmatrix} a_{12} & a_{13} \\ (a_{22}-\lambda) & a_{23} \end{pmatrix}.$$

Both det $\begin{pmatrix} a_{12} & a_{13} \\ a_{32} & (a_{33} - \lambda) \end{pmatrix}$ and det $\begin{pmatrix} a_{12} & a_{13} \\ (a_{22} - \lambda) & a_{23} \end{pmatrix}$ are degree one polynomials in λ , with no $\lambda^{n-1} = \lambda^2$ term. The first term

$$(a_{11}-\lambda)\det\begin{pmatrix}(a_{22}-\lambda)&a_{23}\\a_{32}&(a_{33}-\lambda)\end{pmatrix}$$

equals $(a_{11}-\lambda)(a_{22}-\lambda)(a_{33}-\lambda)-a_{32}a_{23}$, and only the first part of this, $(a_{11}-\lambda)(a_{22}-\lambda)(a_{33}-\lambda)$, can have λ^2 terms. Back to discussing general *n*. Since the λ^{n-1} term of det $(A-\lambda I_n)$ is the same

as the λ^{n-1} term of $(a_{11} - \lambda) \cdots (a_{nn} - \lambda)$,

$$\det(A-\lambda I_n)=(-1)^{n-1}\lambda^n+(a_{11}+\cdots+a_{nn})\lambda^{n-1}+\cdots$$

Conclusion: We then compare the λ^{n-1} -terms on both sides of det(A – λI_n = $(-1)^n (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$, which gives

$$a_{11}+\cdots+a_{nn}=\lambda_1+\cdots+\lambda_n,$$

i.e.

$$\operatorname{Tr}(A) = \lambda_1 + \cdots + \lambda_n.$$

4. Linear independence of eigenvectors

a) Consider a matrix A with two distinct eigenvalues $\lambda_1 \neq \lambda_2$, with associated eigenvectors v_1 and v_2 . We will show that v_1 is not a scalar multiple of v_2 .

Suppose that they were scalar multiples $v_1 = cv_2$. Note that $c \neq 0$, since the eigenvector v_1 can't be 0. Then $Av_1 = A(cv_2) = cAv_2$. Using the eigenvector equations $Av_1 = \lambda_1v_1$ and $Av_2 = \lambda_2v_2$, this becomes $\lambda_1v_1 = c\lambda_2v_2$. Substituting $v_1 = cv_2$, this becomes $\lambda_1(cv_2) = c\lambda_2v_2$. As v_2 and c are not the zero vector/scalar, this implies $\lambda_1 = \lambda_2$, a contradiction.

Therefore v_1 and v_2 are not scalar multiples.

b) Consider a matrix *A* with three distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3$, with associated eigenvectors v_1 , v_2 and v_3 . We will show that v_1, v_2 , and v_3 are linearly independent.

Suppose they were linearly dependent: we would have an equation

$$av_1 + bv_2 + cv_3 = 0$$
,

where at least two of the scalars a, b, c are non-zero. If one of them is zero, we are actually in the situation of a) - we already checked that this was impossible.

Multiplying by *A*, we obtain another equation

$$\lambda_1 a v_1 + \lambda_2 b v_2 + \lambda_3 c v_3 = 0.$$

Now, we may assume that $\lambda_1 \neq 0$ (if it is zero, re-order the eigenvalues - the eigenvalues can't all be zero, since they are 3 distinct numbers). We can subtract λ_1 times the equation $av_1 + bv_2 + cv_3 = 0$ from $\lambda_1 av_1 + \lambda_2 bv_2 + \lambda_3 cv_3 = 0$, to get

$$(\lambda_2 - \lambda_1)b\nu_2 + (\lambda_3 - \lambda_2)c\nu_3 = 0.$$

Since all the eigenvalues were distinct, the coefficients $(\lambda_2 - \lambda_1)b$ and $(\lambda_3 - \lambda_2)c$ are both nonzero. Therefore the eigenvectors v_2 and v_3 are scalar multiples of each other. But this is impossible, due to **a**)!

Since all cases give rise to contradictions, we may conclude that the assumption that v_1 , v_2 , and v_3 are linearly dependent is impossible. In other words, any three eigenvectors with distinct eigenvalues must be linearly independent.