
Math 218D Problem Session

Week 9

1. Some simple examples

a) The matrix
�

1 0
0 1

�

has characteristic polynomial (λ−1)2, the only eigenvalue

is λ1 = 1, the λ1-eigenspace is R2 with basis {(1, 0), (0,1)}, the matrix is diag-
onal and diagonalizable.

b) The matrix
�

2 0
0 −2

�

has characteristic polynomial (λ− 2)(λ+ 2), the eigen-

values are λ1 = 2 and λ2 = −2, the λ1-eigenspace is Span{(1, 0)} and the
λ2-eigenspace is Span{(0, 1)}, the matrix is diagonal and diagonalizable.

c) The matrix
�

0 0
0 0

�

has characteristic polynomial λ2, the only eigenvalue is

λ1 = 0, the λ1-eigenspace is R2, the matrix is diagonal and diagonalizable.

d) The matrix
�

0 1
1 0

�

has characteristic polynomial (λ − 1)(λ + 1), the eigen-

values are λ1 = 1 and λ2 = −1, the λ1-eigenspace is Span{(1, 1)} and the
λ2-eigenspace is Span{(1,−1)}, the matrix is not diagonal but is diagonaliz-
able.

e) The matrix
�

1 1
1 1

�

has characteristic polynomial λ(λ−2), the eigenvalues are

λ1 = 0 and λ2 = 2, the λ1-eigenspace is Span{(1,−1)} and the λ2-eigenspace
is Span{(1, 1)}, the matrix is not diagonal but is diagonalizable.

f) The matrix
�

2 1
0 2

�

has characteristic polynomial (λ−2)2, the only eigenvalue

is λ1 = 2, the λ2-eigenspace is Span{(1, 0)}, the matrix is neither diagonal nor
diagonalizable.

g) The matrix
�

2 1
−1 2

�

has characteristic polynomialλ2−4λ+5. Since 42−4·5<

0, this polynomial has no real root. This means it has no real eigenvalues, and
cannot be diagonalized via real matrices. It is not diagonal.



2. A 2× 2 diagonalization

Consider the matrix A=
�

−1 2
−3 4

�

.

a) The characteristic polynomial is λ2 − 3λ+ 2= (λ− 1)(λ− 2)

b) The two eigenvalues are λ1 = 1 and λ2 = 2.

c) A λ1 = 1 eigenvector is (1,1).

d) A λ2 = 2 eigenvector is (2,3).

e) D =
�

1 0
0 2

�

, C =
�

1 2
1 3

�

, A=
�

1 2
1 3

��

1 0
0 2

��

1 2
1 3

�−1

.

f) It is not hard to “guess" that (1,2) = −(1,1) + (2,3), i.e. c1 = −1, c2 = 1. If
you already computed the inverse C−1 =

�

3 −2
−1 1

�

, you could also do (c1, c2) =
C−1(1, 2) = (3,−1) + 2(−2,1) = (−1,1).

This means that An(1,2) = An(−(1,1) + (2,3)) = −λn
1(1, 1) + λn

2(2, 3) =
−(1,1) + 2n(2,3).

g) When n is very large, the ratio ‖A
n+1(1,2)‖2
‖An(1,2)‖2 =

(2·2n+1+1)2+(3·2n+1+1)2

(2·2n+1)2+(3·2n+1)2 is approximately
4 (the +1’s are negligible compared to the large 2n terms). This means that
the ratio ‖An+1(1,2)‖

‖An(1,2)‖ is approximately 2.

h) For any n, ‖An+1(1,1)‖/‖An(1,1)‖ is not just approximately, but exactly, equal
to 1.

i) If you were given a random vector w, you would expect ‖An+1w‖/‖Anw‖ to
be approximately 2 when n is very large - most vectors are not in the λ1 = 1
eigenspace, and for any vector not in that eigenspace, the same logic as in g)
would apply.



3. Traces and determinants
Recall that the trace Tr(A) is the sum of the diagonal entries of A.

a) For example, for a), λ1 = 1 and λ2 = 1. Therefore Tr
�

1 0
0 1

�

= 1+ 1 = 2, while
det

�

1 0
0 1

�

= 1 · 1= 1. For a non-diagonal example, look at d) - the eigenvalues
are λ1 = 1,λ2 = −1, Tr

�

0 1
1 0

�

= 1+ (−1) = 0 while det
�

0 1
1 0

�

= 1 · (−1) = −1.

b) For any n× n matrix, the polynomial p(λ) = det(A−λIn) can be factored as

p(λ) = (−1)n(λ−λ1) · · · (λ−λn).

When you set λ = 0 in det(A−λIn), you get det(A). When you set λ = 0 in
(−1)n(λ− λ1) · · · (λ− λn), you get (−1)n(−λ1) · · · (−λn) = λ1 · λn. Therefore
det(A) = λ1 ·λn.

c) The determinant det(A) has another product formula:

det(A) = (−1)kd1 · · · dn,

when the A has REF with pivot entries d1, . . . , dn, found using Gaussian elimi-
nation w/o row scaling and with k row swaps. Even though this formula looks
quite similar to the formula of b), eigenvalues and pivots are not at all the
same.

An example of a 2 × 2 matrix where the pivots d1, d2 are not the same as
the eigenvalues λ1,λ2 is given by

�

0 1
1 1

�

. This matrix has p(λ) = λ2 − λ − 1,

hence has eigenvalues λ1,λ2 =
1+
p

5
2 , 1−

p
5

2 . But the REF, with one row swap,
is
�

1 1
0 1

�

, with pivots 1, 1. This gives two different formula for the determinant

det
�

1 1
0 1

�

= −1 · 1= 1+
p

5
2 · 1−

p
5

2 .

d) For any n×n matrix, we will show that Tr(A) = λ1+ · · ·+λn. We’ll do the same
strategy as in b), but the details are much trickier.

p(λ)-side: If you expand p(λ) = (−1)n(λ − λ1) · · · (λ − λn) into p(λ) =
(−1)nλn + (?)λn−1 + · · · , the coefficient of λn−1 is λ1 + · · ·+λn.

For example, (−1)3(λ−λ1)(λ−λ2)(λ−λ3) = (−1)3(λ3−(λ1+λ2+λ3)λ2+
(λ1λ2 +λ2λ3 +λ3λ1)λ−λ1λ2λ3.

det(A− λI)-side What is the coefficient of λn−1 for det(A− λI)? Well, you
have to think very carefully about the cofactor expansion, or really the formula
you get when you do cofactor expansion n times, all the way to 1×1 matrices.
The only term in the cofactor expansion which has a possibility of having a
λn−1 term is the product (a11−λ) · · · (ann−λ), coming from the (1,1)-cofactor
n times.



For example, when n= 3,

det

 

(a11 −λ) a12 a13
a21 (a22 −λ) a23
a31 a32 (a33 −λ)

!

= (a11 −λ)det
�

(a22 −λ) a23
a32 (a33 −λ)

�

− a21 det
�

a12 a13
a32 a33 −λ

�

+ a31 det
�

a12 a13
(a22 −λ) a23

�

.

Both det
�

a12 a13
a32 (a33 −λ)

�

and det
�

a12 a13
(a22 −λ) a23

�

are degree one polyno-

mials in λ, with no λn−1 = λ2 term. The first term

(a11 −λ)det
�

(a22 −λ) a23
a32 (a33 −λ)

�

equals (a11−λ)(a22−λ)(a33−λ)−a32a23, and only the first part of this, (a11−
λ)(a22 −λ)(a33 −λ), can have λ2 terms.

Back to discussing general n. Since the λn−1 term of det(A−λIn) is the same
as the λn−1 term of (a11 −λ) · · · (ann −λ),

det(A−λIn) = (−1)n−1λn + (a11 + · · ·+ ann)λ
n−1 + · · · .

Conclusion: We then compare the λn−1-terms on both sides of det(A−
λIn) = (−1)n(λ−λ1) · · · (λ−λn), which gives

a11 + · · ·+ ann = λ1 + · · ·+λn,

i.e.
Tr(A) = λ1 + · · ·+λn.



4. Linear independence of eigenvectors

a) Consider a matrix A with two distinct eigenvalues λ1 6= λ2, with associated
eigenvectors v1 and v2. We will show that v1 is not a scalar multiple of v2.

Suppose that they were scalar multiples v1 = cv2. Note that c 6= 0, since the
eigenvector v1 can’t be 0. Then Av1 = A(cv2) = cAv2. Using the eigenvector
equations Av1 = λ1v1 and Av2 = λ2v2, this becomes λ1v1 = cλ2v2. Substi-
tuting v1 = cv2, this becomes λ1(cv2) = cλ2v2. As v2 and c are not the zero
vector/scalar, this implies λ1 = λ2, a contradiction.

Therefore v1 and v2 are not scalar multiples.

b) Consider a matrix A with three distinct eigenvalues λ1,λ2,λ3, with associated
eigenvectors v1, v2 and v3. We will show that v1, v2, and v3 are linearly inde-
pendent.

Suppose they were linearly dependent: we would have an equation

av1 + bv2 + cv3 = 0,

where at least two of the scalars a, b, c are non-zero. If one of them is zero, we
are actually in the situation of a) - we already checked that this was impossible.

Multiplying by A, we obtain another equation

λ1av1 +λ2 bv2 +λ3cv3 = 0.

Now, we may assume that λ1 6= 0 (if it is zero, re-order the eigenvalues -
the eigenvalues can’t all be zero, since they are 3 distinct numbers). We can
subtract λ1 times the equation av1+bv2+cv3 = 0 from λ1av1+λ2 bv2+λ3cv3 =
0, to get

(λ2 −λ1)bv2 + (λ3 −λ2)cv3 = 0.
Since all the eigenvalues were distinct, the coefficients (λ2−λ1)b and (λ3−

λ2)c are both nonzero. Therefore the eigenvectors v2 and v3 are scalar multi-
ples of each other. But this is impossible, due to a)!

Since all cases give rise to contradictions, we may conclude that the assump-
tion that v1, v2, and v3 are linearly dependent is impossible. In other words,
any three eigenvectors with distinct eigenvalues must be linearly independent.


