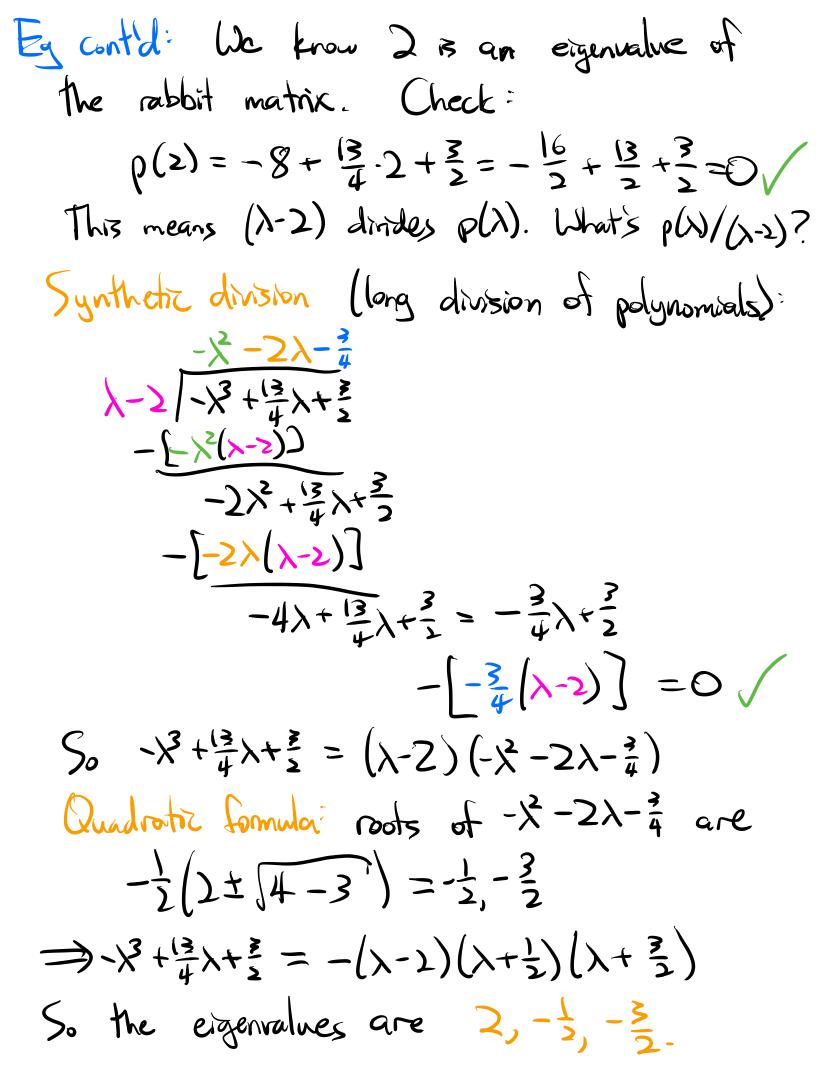
The Characteristic Polynomial Last time: ·An eigenvector of a square matrix A is a nonzero vector v such that Av=Zr for a scalar λ . • The associated eigenvalue is A. We like eigenvectors because $A^{k}v = \mathcal{N}^{k}v$ for all k. Given an eigenvalue λ , we know how to compute all λ -eigenvectors: the λ -eigenspace is Nul (A - XIn) How do you find the eigenvalues of A? λ is an eigenvalue of A \Longrightarrow A- λ In is not invertible \Leftrightarrow det $(A - \lambda I_n) = O$ Def: The characteristic polynomial of an nxn matrix A is $p(\lambda) = det(A - \lambda I_n)$

 λ is an eigenvalue of $A \iff p(\lambda) = 0$ Eq: Find all eigenvalues of $A = \begin{pmatrix} 0 & 13 & 12 \\ 14 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$ det $(A - \lambda I_3) = det \begin{pmatrix} V_4 & -\lambda & 0 \\ 0 & Y_2 & -\lambda \end{pmatrix}$ expand $\frac{\text{expand}}{\text{cotactors}} = -\lambda^3 + \frac{13}{4}\lambda + \frac{3}{2} = \rho(\lambda)$ How do we find the roots of a degree-n polynomial? • In real life: ask a computer NB the computer will turn this back into an eigenvalue problem and will use a different (faster) eigenvalue-finding algorithm · By hand: I'll give you one root 20. Compute the quadratic polynomial p(N/(X-X) using synthetic division, then use the quadratic formula.

NB: This is not a Gaussian elimination problem!



To check these are eigenvalues, let's find
some eigenvectors!
2 ~~ Nul(A-2I_3) = Nul
$$\begin{pmatrix} -2 & 13 & 12 \\ 14 & 12 & 0 \end{pmatrix} = Spen \left\{ \begin{pmatrix} 322 \\ 4 & 1 \end{pmatrix} \right\}^2$$

 $-\frac{1}{2} ~~ Nul (A+\frac{1}{2}I_3) = Nul \begin{pmatrix} 122 & 13 & 12 \\ 124 & 12 & 0 \\ 124 & 12 & 0 \end{pmatrix} = Spen \left\{ \begin{pmatrix} 2-1 \\ -1 \end{pmatrix} \right\}^2$
 $-\frac{3}{2} ~~ Nul (A+\frac{1}{2}I_3) = Nul \begin{pmatrix} 312 & 13 & 12 \\ 124 & 12 & 0 \\ 124 & 12 & 0 \end{pmatrix} = Spen \left\{ \begin{pmatrix} -2 \\ -3 \end{pmatrix} \right\}^2$
In this example, $p(\lambda) = -\lambda^3 + \frac{13}{4}\lambda + \frac{3}{2}$ is a
degree - 3 polynomial. What does it look like in
general? Let's try 2x2 matrices first.
Eq: A = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
det $(A - \lambda I_2) = det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = (a - \lambda)(d - \lambda) - bc$
 $= \lambda^2 - (a + d)\lambda + (ad - bc)$
trace det(A)
This is a polynomial of degree 2.
Def: The trace of a matrix A is
 $Tr(A) =$ the sum of the diagonal entries of A.
Eq: A = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 $Tr(A) = a + d$

(

Characteristic Polynomial of a
$$2x^2$$
 Matrix A
 $p(\lambda) = \chi^2 - Tr(A)\lambda + det(A)$

NB:
$$p(o) = det(A - OIn) = det(A)$$

so the constant term is always det(A).
General Form: If A is an nxn matrix, then
 $p(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} Tr(A) \lambda^{n-1}$
 $+ (other terms) + det(A)$

-> This is a degree-n polynomial
-> You only get the
$$\chi^{n-1}$$
 and constant coeffs
"for free" - the rest are more complicated.

$$E_{3} \cdot A = \begin{pmatrix} 0 & 13 & 12 \\ 14 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \longrightarrow p(\lambda) = -\lambda^{3} + (\lambda^{2} + \frac{13}{4}\lambda + \frac{3}{2})$$
$$T_{n}(A) = 0 + 0 + 0 = 0 \quad \forall \quad det(A) = -\frac{1}{4} \cdot (-\frac{12}{2}) = \frac{3}{2} \checkmark$$

Consequence: An nxn matrix has at most n eigenvalues. Diagonalization Rabbit Example Contid: We computed the matrix $A = \begin{pmatrix} 0 & 13 & 12 \\ 14 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$ has eigenvalues $2, -\frac{1}{2}, -\frac{3}{2}$ & eigenspaces 2: Span $\{\binom{32}{4}\}$ $-\frac{1}{2}$: Span $\{\binom{2}{1}\}$ $-\frac{3}{2}$: Span $\{\binom{18}{-3}\}$ Let's give names to some eigenvectors: $\omega_1 = \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix} \qquad \omega_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \qquad \omega_3 = \begin{pmatrix} 13 \\ -3 \\ 1 \end{pmatrix}$ We know what happens if we start with $\begin{pmatrix} 32\\4 \end{pmatrix}$ rabbits: $A^{k} \begin{pmatrix} 32\\4 \end{pmatrix} = 2^{k} \begin{pmatrix} 32\\4 \end{pmatrix} \rightarrow doubles each time.$ What if we start with vo= (16)? Fact: $V_0 = \begin{pmatrix} 16 \\ 6 \end{pmatrix}$ can be written as a linear Combination of eigenvectors: $\binom{16}{6} = \omega_1 + \omega_2 - \omega_3$ Now it's easy to compute Ak Vo! $A^{k}v_{0} = A^{k}(\omega_{1} + \omega_{2} - \omega_{3}) = A^{k}\omega_{1} + A^{k}\omega_{2} - A^{k}\omega_{3}$ $= 2^{k}\omega_{1} + \left(-\frac{1}{3}\right)^{k}\omega_{2} + \left(-\frac{3}{3}\right)^{k}\omega_{3}$

$$C = \begin{pmatrix} u_{11} & \dots & u_{n} \\ u_{11} & \dots & u_{n} \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_{11} & \dots & \lambda_{n} \\ \lambda_{n} \end{pmatrix} \qquad A w_{i} = \lambda_{i} w_{i}$$
Eq. $A = \begin{pmatrix} 0 & 13 & 12 \\ v_{4} & 0 & 0 \\ 0 & v_{2} & 0 \end{pmatrix} \implies A = CDC^{-1} \text{ for}$

$$C = \begin{pmatrix} 32 & 2 & 0 \\ 4 & 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -v_{2} & 0 \\ 0 & 0 & -3j_{2} \end{pmatrix}$$
Proof: $C \begin{pmatrix} \lambda_{1} \\ \lambda_{n} \end{pmatrix} = \chi_{i} w_{1} + \dots + \chi_{n} w_{n}$

$$\implies C^{-1} \begin{pmatrix} \chi_{i} w_{1} + \dots + \chi_{n} w_{n} \end{pmatrix} = \begin{pmatrix} \chi_{i} \\ \chi_{n} \end{pmatrix}$$
Any vector has the form $v = \chi_{i} w_{1} + \dots + \chi_{n} w_{n}$

$$CDC^{-1}v = CDC^{-1} \begin{pmatrix} \chi_{i} w_{1} + \dots + \chi_{n} w_{n} \end{pmatrix}$$

$$= C \begin{pmatrix} \chi_{1} & \dots & 0 \\ 0 & \chi_{n} \end{pmatrix} \begin{pmatrix} \chi_{i} \\ \chi_{n} \end{pmatrix}$$

$$= \chi_{i} \lambda_{i} \dots \begin{pmatrix} \chi_{i} \\ \omega_{i} & \dots & \omega_{n} \end{pmatrix}$$

$$= A(\chi_{i} w_{i} + \dots + \chi_{n} w_{n}) = Av$$

NB: De A=CDC⁻¹ then

$$A^{k} = (CDC^{-1})^{k} = (CDC^{-1})(CDC^{-1}) \cdots (CDC^{-1})$$

 $= (D^{k}C^{-1} = C \begin{pmatrix} \lambda^{k} & 0 \\ 0 & \lambda^{k} \end{pmatrix} C^{-1}$
This is a closed form expression for A^{k} in terms
of k: much easier to compute!
 $A^{k} = CD^{k}C^{-1} \qquad \text{matrix form:}$
 $Compare p.8$
I this matrix has n^{2} entries
that are functions of k

 $p(\lambda) = \lambda^2 - T_r(A)\lambda + \det(A)$ $= \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$ $E_{g}: A = (b :)$ The only eigenvalue is 1, and the 1-eigenspe is $Nul(A-I_2) = Nul(0) = Span \{(0)\}$ So all eigenvectors lie on the x-axis ⇒ not dragonalizable! (cf. p.5 of WIOLI notes) Procedure to Diagonalize a Matrix: (1) Compute the characteristic polynomial p(2) (2) Find the roots of $p(\pi) = ergenvalues of A$ (3) Find a basis for each eigenspace = Nul(A-)In) (using PVF) Combine your bases from (3). It you end up with a vector, they form an eigenbasis. Otherwise, A is not diagonalizable. Fact: IF W,,-, wp are eigenrectors with different eigenvalues then {w,,-., wp} is linearly independent. So in the procedure, you never have to check if bases of different eigenspaces are LI when you combine them.

Proof of the Fact: Say Aw:=
$$\lambda_i w_i$$
 and all of the
 $\lambda_{i_j \dots i_p}$ are distinct: Suppose $\{w_j,\dots,w_p\}$ is LD.
Then for some is $\{w_{i_j \dots j}, w_i\}$ is LI but
 $w_{i_1i} \in \text{Span} \{w_{i_j \dots j}, w_i\}$ so
 $w_{i_1i} = \chi_i w_{i_1} + \dots + \chi_i w_i$
 $\Rightarrow Aw_{i_1i} = A(\chi_i w_{i_1} + \dots + \chi_i w_i)$
 $\Rightarrow \lambda_{i_1i} w_{i_1i} = \lambda_i \chi_i u_{i_1} + \dots + \lambda_i \chi_i w_i$
IF $\lambda_{i_1i} = 0$ then $\lambda_i \chi_i u_{i_1} + \dots + \lambda_i \chi_i w_i = 0$
 $\chi_i = \dots = \chi_i = 0$ (because $\lambda_{j \dots j}, \lambda_i \neq 0$), so $w_{i_1i_1} = 0$
 $W_{i_1i_1} = \frac{\lambda_i}{\lambda_{i_1i_1}} \chi_i w_{i_1} + \dots + \frac{\lambda_i}{\lambda_{i_1i_1}} \chi_i w_i$
If $\lambda_{i_1i_1} \neq 0$ then
 $w_{i_1i_1} = \frac{\lambda_i}{\lambda_{i_1i_1}} \chi_i w_{i_1} + \dots + \frac{\lambda_i}{\lambda_{i_1i_1}} \chi_i w_i$
Subtract $w_{i_1i_1} = \dots \times \omega_{i_1} + \dots + (\frac{\lambda_i}{\lambda_{i_1i_1}} - 1) \chi_i w_i$
But $\lambda_j \neq \lambda_{i_1i_1}$ for $j \leq i_j$ so $\frac{\lambda_i}{\lambda_{i_1i_1}} - 1 \neq 0$
which is impossible, as before.

Consequence: If A has n (different) eigenvalues then A is diagonalizable.

Indeed, if No-7 An are eigenvalues and Aw_= Niw1,..., Awn= Nnwn Then Swo..., w. 3 is an eigenback by the Fact.