
 

Quadratic Optimization Continued

Last time We discussed 2 quadratic optimization problem
Let a lx be a quadratic form in n variables

1 Extremize glx subject to 11 11 1

u gG xtSx for Symmetric
Eigenvalues of S AE EX

Maximumvalue is An achieved on a

unit Xn eigenvector
Minimumvalue is 7 achieved on a

unit X eigenvector

2 Extremize 11411 subject to a 1 7 1
only works for q positive definite

qlx xtSx for S positive definite

Eigenvalues of S OC AE EX

Minimum value of 11 11 is Ian achieved on

An Un Un unit an eigenvector

Maximumvalue of 11 11 is 1 7 achieved on

YA u u unit X eigenvector



Additional constraints Let a be a quadratic form

qlx xtSx eigenvalues Xie EA n of S
Let us be a Ai eigenvector
What is the minimum value of q lx subject to

11 11 l and x t ni

NB Without the x tu constraint the answer is Xi
This comes up if you don't care about 7
leg if X 0 for a dumb reason

Answer The minimum value is Xz achieved at any
unit Xz eigenvector that is orthogonal to ur

This is automatic if Da 7

why
In the diagonal case qG Dixie taxi is

minimized at e 11 o o Then xt e e x ero

x O x xn So we're extremizing

q one Xn Taxi t taxi
which we know how to do

In the non diagonal case we changevariables

to reduce to the diagonal case exercise



This also works for maximizing

Q What is the maximum value of q lx subject to
11 11 l and xt un

A The maximum value is any achieved at any
unit Xu eigenvector Ian

You can keep going

Q What is the maximum value of q lx subject to
11 11 l and x fun and stunt

A The maximum value is Ann achieved at any
unit In eigenvector in Span an yun

t

This works for quadratic optimization problem 2

Q What is the maximum value of 11 11 subject to

glx l and x tu

A The maximum value is Xi achieved at any
unit Xz eigenvector 141



Geometric Interpretation
Recall An equation of the form III car

E 1 5 1 too n olmos

rien defines an ellipse IÉÉ Co ra

This is a circle horizontally stretchedby r

vertically stretched by n

If alx xo Xiao is diagonal positive definite

then glue I defines the ellipse o Ya

E 181511 E Tasos
and extremizing 11 112 1 subject to Axle ily
glx I amounts to finding the

Hulk IAshortest longest vectors on the

ellipse

In general glx Dixit taxi all Xi o

defines an ellipsoid egg extremizing Axl

subject to glut 1 means finding the shortest
longest vectors



Non diagonal ease

qGkxtSx for S positive definite

Let X Eta bethe eigenvalues Ui uz orthonormal
eigenvectors

Changevariables X Qy Q 4K

digit day I q x I

multiplyok

TA EI.g.atFEET go u QU

y plane
U2 Qe x plane

Upshot q lx I defines a rotated ellipse

The major axis is in the u direction

The longest rector is It U
The minor axis is in the uz direction

The shortest rector is I fear
So we're drawn a picture of quadratic optimization
problem 2

Everything works in higher dimensions just get
rotated ellipsoids



DLT Cholesky

This is an 100 about positive definite symmetric matrices

It amounts to an Ln decomposition that's 2x as fast
to compute

Thm A positive definite symmetric matrix S can be
uniquely decomposed as

SI LDLT and S L Lt Cholesky

where

D diagonal w positive diagonal entries
L lower unitriangular
L lover triangular with positive diagonal entries

Proof i supplement

NB Let U DLT
scales the rows of Lt by the diagonal entries of D

Then U r upper D with positive diagonal entries

in REF so Se Lll is the LU decomposition

This tells us how to compute an LDL decomposition



Procedure to compute S LD Lt
Let S be a symmetricmatrix

1 Compute the LU decomposition S LU

If you have to do a row swap then stop

S is not positive definite
If the diagonal entries of U are notall
positive then stop S is not positive definite

2 let D the matrix of diagonal entries of U
setthe off diagonal entries OD Then

S LDLT

NB An LDLt decomposition can be computed recursively

in ut n flops as opposed to 43 n for La

NB This is still an LU decomposition lets you
solve Sx b quickly



Eg Find the LDLT decomposition of
2 4 2

5 14 a t
2 I 14

2 column L U
methed 2 4 2

EET

1 3Rear I 184
2

Rst Ri o 3 12

Rs R I
So SILDIT for

D

Check

but 1 1 1 q



Cholesky from LDLT
If S is positive definite then S LD Lt
where D is diagonal with positive diagonal entries

If D Ein set D E g
Then TD TD D and BEND so

DLT L DOLT LD LEDIT
So just set

Li LTD S LILI

Strang

SATA is how a positive definite symmetric
matrix is put together

S Lili is how you pull it apart

Eg EI I L Lit for

E



Toward the SVD

We'll discuss the SVD next time
Today let's prove the crucial ingredients from
symmetric matrices

Recall If A is any matrix then SATA is

positive semidefinite it has nonnegative eigenvalues

Facts Let u be an eigenvector of ATA with
eigenvalue A and let u Av
1 Hull a Hull

2 If A 0 then u is an eigenvector of

AAT with eigenvalue X

3 Let r be another eigenvector of ATA
with eigenvalue X and let u Ar If
v v 0 then u n D

this is automatic when A X

Proof I Hull Av Ar Art Ar
TATAR HATA r VT Xu

Autre X v v XAN



2 If 720 then u 0 by i Now compute

AATWAATAU ALATAU Alar
Ar Xu

3 u u Ar Avi AUSTEN
TATA r HATA ri UTA've

X vtr y v r D

We'll use the Facts to prove

Theorem SVD Vector Form
Let A be an men matrix of rank r

Then there exist orthonormal sets

us gurl in IR and

an ur in R

such that

A quint taunstt taunt

for numbers 6,2622 Zar 20

Here vi now is an orthonormal eigenbasis of ATA
for the nonzero eigenspaces Gitai and we atAvi


