Quadratic Optimization: Continued

Last time: Le discussed 2 quadratic optimization problems. Let q(x) be a quadratic form in n variables.

Additional constraints: Let q be a quadratic form.
q(x)=xT5x, eigenvalues
$$\lambda_i \leq \dots \leq \lambda_n$$
 of S.
Let u, be a λ_i -eigenvector.
What is the minimum value of q(x) subject to
 $\|x\|=1$ and $x \perp u, ?$
NB: Without the "x \perp u," constraint, the answer is λ_i !
This comes up if you don't care about λ_i
(eq. if $\lambda_i=0$ for a dumb reason).

Answer: The minimum value is
$$\lambda_2$$
, achieved at any
unit λ_2 -eigenvector that is orthogonal to U_1 .
(This is automatic if $\lambda_2 \neq \lambda_1$.)

Uhy?
In the diagonal case,
$$q(x) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$$
 is
minimized at $e_1 = (1, 0, \dots, 0)$. Then $x \perp e_1 \Longrightarrow x \cdot e_1 = 0$
 $\Longrightarrow x = (0, x_{e_1}, \dots, x_n)$. So we're extremizing
 $q(0, x_{e_1}, \dots, x_n) = \lambda_2 x_1^2 + \dots + \lambda_n x_n^2$
which we know how to do.
In the non-diagonal case, we change variables
to reduce to the diagonal case, we change variables

This also works for maximizing: (2: What is the maximum value of q (x) subject to ||x||=1 and x L un? A: The maximum value is This, achieved at any unit hureigenvector Lun.

You can keep going: (2: What is the maximum value of q (x) subject to ||x||=1 and x L un and x L un.? A: The maximum value is Then, achieved at any unit The cigenvector in Span Sun-y unst

This vortes for quadratic optimization problem #2: Q: What is the maximum value of $||x||^2$ subject to q(x) = 1 and $x \perp u_1$? A: The maximum value is λ_2 , achieved at any unit λ_2 -eigenvector $\perp u_1$.

Geometric Interpretation
Recall: An equation of the form
$$\lim_{x \to 1} \sum_{i=1}^{n} (i, o)$$

 $(\frac{x}{r_i})^2 + (\frac{x}{r_e})^2 = 1$
 $(r_i z_r_i)$ defines an ellipse. $\lim_{x \to 1} \sum_{i=1}^{n} (i, o)$
 $(r_i z_r_i)$ defines an ellipse. $\lim_{x \to 1} \sum_{i=1}^{n} (i, o)$
 $(This is a circle horizontally stretched by r_i .
(This is a circle horizontally stretched by r_i .)
If $q(x_i, x_i) = \lambda_i x_i^2 + \lambda_i x_i^2$ is dragonal & positive definite
then $q(x_i, x_i) = \lambda_i x_i^2 + \lambda_i x_i^2$ is dragonal & positive definite
then $q(x_i, x_i) = \lambda_i x_i^2 + \lambda_i x_i^2$ is dragonal & positive definite
then $q(x_i, x_i) = 1$ defines the ellipse $(0, Y/\lambda_i)$
 $(\frac{x_i}{1/\lambda_i})^2 + (\frac{x_i}{1/\lambda_i})^2 = 1 (\frac{n_i = 1/\lambda_i}{r_i = 1/\lambda_i})$
and extremizing $\|x\|^2 = 1$ subject to
 $q(x) = 1$ amounts to finding the $\|y\|^2 = 1/\lambda_i$
ellipse.
In general, $q(x) = \lambda_i x_i^2 + \dots + \lambda_i x_i^2$ (all $\lambda_i > 0$)
defines an ellipsoid ("eag") is extremizing $\|x\|^2$
subject to $q(x) = 1$ means finding the shortest
8 longest vectors.$

Non-diagonal case: q(x)=xTSx for S positive-definite. Let $\lambda, \leq \lambda_2$ be the eigenvalues, u_1, u_2 orthonormal eigenvectors. Change variables: X=Qy Q=(4, 4) $\lambda_{i}y_{i}^{2} + \lambda_{2}y_{2}^{2} = 1$ q(x) = 1(0, YJA2) the (0, YJA2) the (VAn, 0) y-plane y-plane nultuply by Q by Q the (VAn, 0) U1 = Qei U2 = Qe2 x-plane Upshot: q(x)=1 defines a (rotated) ellipse The major exis is in the u,-direction. -> The longest vector is IT, UI The minor axis is in the uz-direction. The shortest vector is I Thuz. So ve're drawn a picture of quadratic optimization problem #2. Everything works in higher dimensions; just get rotated ellipsoids.

LDLT & Cholesky

This is an IOU about positive-definite symmetric matrices. If amounts to an LN decomposition that's Ix as fast to compute.

Procedure to compute S=LDL^T: Let S be a symmetric matrix. (1) Compute the LU decomposition S=LU. -> If you have to do a row swap then stop: Sis not positive-definite. -If the diagonal entries of U are not all positive then stop: Sis not positive-definite. (2) let D= the matrix of diagonal entries of U (set the off-diagonal entries = 0). Then $S = LDL^{r}$.

NB: An LDL⁺ decomposition can be computed in $\gamma_3^+ n^3$ Flops (as opposed to $2/3 n^3$ for LU). This requires a slightly more dever absorption. See the supplement - its also foster by hand!

NB: This is still on LU decomposition - lets you solve Sx=b quickly.

Find the LDLT decomposition of

$$S = \begin{pmatrix} 2 & 4 & -2 \\ 4 & q & -1 \\ -2 & -1 & 14 \end{pmatrix}$$
2-column L U
nothod:

$$\begin{pmatrix} 1 \\ 2 \\ -2 & -1 & 14 \end{pmatrix}$$

$$R_{1} = 2R_{1} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 4 & q & -1 \\ -2 & -1 & 14 \end{pmatrix}$$

$$R_{2} = 2R_{1} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 3 & 12 \end{pmatrix}$$

$$R_{3} = 3R_{2} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 3 & 12 \end{pmatrix}$$

$$R_{3} = 3R_{2} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

$$S_{2} = LDLT \text{ for}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

$$Check = DLT = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix} = (M_{1} + M_{2} + M_{2}$$

$$\begin{aligned} \mathbf{JF} \quad D = \begin{pmatrix} d_{1} & 0 \\ 0 & d_{n} \end{pmatrix} \quad \text{set} \quad \mathbf{JD} = \begin{pmatrix} \sqrt{A_{1}} & 0 \\ 0 & \sqrt{A_{n}} \end{pmatrix} \\ \text{Then} \quad \mathbf{JD} \cdot \mathbf{JD} = D \quad \text{and} \quad \mathbf{JD}^{T} = \mathbf{JD}, \text{ so} \\ \text{LDL}^{T} = L \cdot \mathbf{JD} \cdot \mathbf{JD} L^{T} = (L \cdot \mathbf{JD})(L \cdot \mathbf{JD})^{T} \\ \text{So} \quad \text{just set} \\ L_{1} = L \cdot \mathbf{JD} \quad \Rightarrow \quad S = L_{1} \cdot L_{1}^{T} \\ \text{Strang:} \\ \text{"S=ATA} \quad \text{is how a positive-definite symmetric metrix is put tagether.} \\ \text{S=L_{1}L_{1}^{T} \quad \text{is how you pull } t \text{ apart}^{"} \\ \text{S=L_{1}L_{1}^{T} \quad \text{is how you pull } t \text{ apart}^{"} \\ \text{S=L_{1}L_{1}^{T} \quad \text{is how you pull } t \text{ apart}^{"} \\ \text{L}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} S_{2} & 0 & 0 \\ 0 & \sqrt{B} & 0 \end{pmatrix} = \begin{pmatrix} S_{2} & 0 & 0 \\ 2S_{2} & 1 & 0 \\ -S_{2} & 3 & \sqrt{B} \end{pmatrix} \end{aligned}$$

IF Sis positive-definite then S=LDLT

where D is diagonal with positive diagonal entries.

Cholesky from LDLT:

Toward the SVD

We'll discuss the SVD next time. Today let's prove the crucial ingredients from symmetric matrices.

Recall: If A is any matrix then S=ATA is positive-semidefinite: it has nonnegative eigenvalues.

(2) If
$$\lambda > 0$$
 then $u \neq 0$ by (i). Now compute:
 $AATu = AAT(Av) = A(ATAv) = A(\lambda v)$
 $= \lambda Av = \lambda u$.
(3) $u \cdot u' = (Av) \cdot (Av') = (Av)^T (Av')$
 $= vTATAv' = vT(ATAv') = vT(\lambda'v')$
 $= \lambda' vTv' = \lambda' v \cdot v' = 0$.
We'll use the Facts to prove:
Theorem (SVD) Vector Fam):
Let A be an max matrix of renk r.
Then there exist orthonormal sets
 $Sv_{0}...,vr'$ in \mathbb{R}^{n} and
 $Su_{0}...,ur'$ in \mathbb{R}^{n} and
 $Su_{0}...,ur'$ in \mathbb{R}^{n}
such that
 $A = \sigma u.v.^{T} + \sigma u.v.^{T} + \sigma ru.v.^{T}$
for numbers $\sigma \geq \sigma_{2} = \sigma \geq 0$.
Here $Sv_{0}...,vr'$ is an orthonormal eigenbasis of ATA
for the ronzero eigenspaces, $\sigma_{i} = \sqrt{\lambda_{i}}$, and $u_{i} = \frac{1}{\sigma_{i}}Av_{i}$.