The Singular Value Decomposition
This is the apstone of the class.
It's a fundamental application of preor adjebra to:
• Statistics (PCA) • Engineering
• Data Science • etc.
Then (SVD) outer product form):
Let A be an main matrix of rank r. Then

$$A = \sigma(u,v,t + \sigma(u,v,t + \dots + \sigma(u,v,t))$$

where
• $\sigma(2\sigma \geq \dots \geq \sigma_{2} \geq 0)$
• $\{u_{1,v}, \dots, u, r\}$ is an orthonormal set in R^m
• $\{v_{1,v}, \dots, v, r\}$ is an orthonormal set in R^m.
What does this mean?
Totan: columns of A are data points
 $r = 1:$ let $u \in \mathbb{R}^{m}$, $v \in \mathbb{R}^{m}$ be nonzero vectors.
 $uvT = \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix} (v_{1} \dots v_{n}) = \begin{pmatrix} v_{1}u_{2} \dots v_{n}u_{n} \\ u_{2}v_{2} \dots v_{n}v_{n} \end{pmatrix}$
This is an main matrix of reak 1.: $(ol(uvT) = Spen lug)$

Let's plot the columns ("data point")
(3) (-1 2 1 3 -2)
Upshot A rank-1 matrix encodes data points (columne)
that lie on a line.
r=D: A=u,v,r+u_2v_2r = (v_1u_1 - v_1u_1) + (v_2u_1 - v_2u_2)
= (v_1u_1+v_2u_2 - v_2u_1) + (v_2u_1 - v_2u_2)
The columns are linear co-binations of u_1 & u_2.
Let's plot the columns ("data point"):
u, u= coeffect (3)
(3) (-1 2 1 3 -2)
u_2 (3) (-1 2 1 3 -2)
u_3 N_{v_2} = coeffect (-3)
Upshot: A rank-2 matrix encodes data points that lie on
the plane Spansuyu_2
But: ||(3)||
$$\gg$$
 ||(-3)|| so the (-3) direction is less
imperfect.

 $\binom{3}{1}(-1 \ 2 \ 1 \ 3 \ -2) + \binom{\cdot2}{-3}(3 \ 1 \ 2 \ -1 \ 0)$ $\Im \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 & 3 & -2 \end{pmatrix}$ (to one decimal place) We're extracted important information: our data points almost lie on a line! In general, the SVD will find the best-fit line, plane, 3-space, ..., r-space for our data, all at once Not least-squares: the error will be in statistical language (variance). Why might we care? · Data compression: UVT is 7 numbers instead of 10 for a 2×5 matrix. · Data analysis: SVD will reveal all approximate linear relations among our data points. · Statistics: SVD fords more & less important correlations etc.

Note 3: Take transposes:

$$A^{T} = (a_{1}u,v,t + \dots + a_{r}u,v,t)^{T}$$

 $= a_{1}v,u,t + \dots + a_{r}v,u,t$
Therefore,
 $A^{T} = a_{1}v,u,t + \dots + a_{r}v,u,t$
is the SVD of AT!
So A & A^{T} have the same
 \cdot singular values and
 \cdot singular values \cdot so
 \cdot singular values \cdot singular values \cdot and
 \cdot singular values \cdot so
 \cdot singular values \cdot so
 \cdot singular values \cdot so
 \cdot singular \cdot so
 \cdot so
 \cdot singular \cdot so
 \cdot so
 \cdot singular \cdot so
 \cdot singular \cdot so
 \cdot so
 \cdot singular \cdot so
 \cdot singular \cdot so
 \cdot so
 \cdot singular \cdot so
 \cdot so
 \cdot singular \cdot so
 \cdot so
 \cdot so
 \cdot singular \cdot so
 \cdot so
 \cdot so
 \cdot so
 \cdot so
 \cdot singular \cdot so
 \cdot so

A^TAr: = A^T(
$$\sigma_{i}u_{i}$$
) = $\sigma_{i}A^{T}u_{i}$ = $\sigma_{i}^{2}v_{i}$
AA^T u_{i} = A($\sigma_{i}v_{i}$) = $\sigma_{i}Av_{i}$ = $\sigma_{i}^{2}u_{i}$
In particular

Prof of SVD: Let $\lambda_{1}z = \lambda_{n}$ be the eigenvalues of ATA (the $\lambda_{1}'s$ show up multiple times if $AM \ge 1$) Note $\lambda_{n} \ge 0$ because ATA \ge positive-semidefinite. Step 1: $\lambda_{n+1} = \cdots = \lambda_{n} = 0$ $\cdot Nul(ATA) = Nul(A)$ has dimension n-r.

- · Nul(ATA) = the O-cigenspace of ATA.
- AM(0) = G-M(0) in ATA because ATA is symmetric => diagonalizable

So nor of the his are =0

$$\Rightarrow \lambda_{rti} = \dots = \lambda_{n=0}$$

Now: $\lambda_{i} \ge \dots \ge \lambda_{n>0}$ are the nonzero eigenvalues
of ATA.
Set:
 $\sigma_{i} = \int \lambda_{i,j} \dots, \alpha = \int \lambda_{r}$
 \cdot Let $v_{i,j} \dots, v_{r}$ be orthonormal eigenvectors
with $A^{T}Av_{i} = \lambda_{i}v_{i}$.
 \cdot Let $u_{i} = \frac{1}{\sigma_{i}}Av_{i} \dots, u_{r} = \frac{1}{\sigma_{r}}Av_{r}$
Check:
 $\cdot \sigma_{i} \ge \sigma_{i} \ge \dots \ge \sigma_{r} >0$
 $\cdot \int v_{i,j} \dots v_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots v_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots v_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i,j} \dots v_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots v_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots v_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \sigma_{r} + \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots u_{r} \xrightarrow{\gamma} = \delta v_{r}$
 $\cdot \int u_{i} \dots \dots \dots \dots \dots \longrightarrow \delta v_{r}$
 $\cdot \int u_{i} \dots \dots \dots \dots \longrightarrow \delta v_{r}$
 $\cdot \int u_{i} \dots \dots \dots \dots \dots \longrightarrow \delta v_{r}$
 $\cdot \int u_{i} \dots \dots \dots \longrightarrow \delta v$

Then
$$u_{1,-3}u_{-3}$$
 is orthonormal and
 $A = \sigma_1 u_1 v_1^{\dagger} + \sigma_2 u_3 v_2^{-T} + \dots + \sigma_r u_r v_r^{T}$.

$$E_{0} A = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} NB: r = 2 (2 pivots)$$

(1) $A^{T}A = \begin{pmatrix} 25 & 20 \\ 20 & 25 \end{pmatrix} p(\lambda) = \lambda^{2} - 50\lambda + 225$
 $= (\lambda - 45)(\lambda - 5)$

 $\lambda_1 = 45$ $\lambda_2 = 5$

(2) Compute eigenspaces:

$$\begin{array}{l}
 A^{T}A - 45 I_{2} = \begin{pmatrix} -20 & 20 \\ -20 & 20 \end{pmatrix} \xrightarrow{1} \quad \forall v_{1} = \frac{1}{5} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
 A^{T}A - 5 I_{2} = \begin{pmatrix} 20 & 20 \\ -20 & 20 \end{pmatrix} \xrightarrow{1} \quad v_{2} = \frac{1}{52} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\
 (3) \quad \sigma_{1} = J_{X_{1}} = J_{45} = 3J_{5} \quad \sigma_{1} = J_{X_{2}} = J_{5} \\
 u_{1} = \frac{1}{\sigma_{1}} Av_{1} = \frac{1}{515} \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} \frac{1}{52} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{515} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \\
 u_{2} = \frac{1}{55} \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} \frac{1}{52} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{515} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \\
 u_{2} = \frac{1}{55} \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} \frac{1}{55} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{515} \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \frac{1}{515} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \\
 u_{2} = \frac{1}{55} \begin{pmatrix} 3 & 0 \\ -1 \end{pmatrix} = \frac{1}{515} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

SVD:

$$\begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} = 3J_5 \cdot \frac{1}{J_10} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \frac{1}{J_2} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \frac{1}{J_2} \begin{pmatrix} 1 \\ 3 \end{pmatrix} + J_5 \cdot \frac{1}{J_10} \begin{pmatrix} 3 \\ -1 \end{pmatrix} \cdot \frac{1}{J_2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Check: $\|u_1\|_2 = \frac{1}{J_10} \int \frac{1}{J_1^2 + 3^2} = 1$ $\|u_2\|_2 = \frac{1}{J_10} \int \frac{3^2 + (-1)^2}{J_2^2 + (-1)^2} = 1$
 $N_1 \cdot N_2 = 0$

Summary:

$$A = \sigma u_i v_i^{\dagger} + \sigma u_s v_s^{\dagger} + \cdots + \sigma_r u_r v_r^{\dagger}$$

 $A v_i = \sigma_i u_i$ $A^{T}Av_i = \sigma_i^2 v_i$ $AA^{T}u_i = \sigma_i^2 u_i$
eigenvectors
 $A^{T} = \sigma_i v_i u_i^{T} + \cdots + \sigma_r u_r^{T}$