Orthogonal Projections Recall to find the best approximate solution of Ax=b, want to find the closest vector b to b in Col(A) = SAx: xER? 3 Q: If V is a subspace of IR" and bER", which is the closest vector by to b in V? Closest means: Ilb-byll is minimized over all brev A: b-b is orthogonal to V: b-beV1 [demo] Def: Let V be a subspace of Rⁿ and berRⁿ. The orthogonal projection of 6 onto V is the closest vector by in V to b. It is defined by b-breV+ The orthogonal decomposition of to V is b = bv + bvib relative

Here
$$b_{YI} = b - b_{YE} V^{\perp}$$
. Note that
 $b - b_{YI} = b_{VE} V = (V^{\perp})^{\perp}$
So that b_{VI} is projection onto V^{\perp} .
In other words, the orthogonal decomposition is
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $closest vector bV = (closest vector bV)$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $b = (closest vector bV) + (closest vector bV^{\perp})$
 $closest vector bV$
 $closest vector bV$
 $closest vector bV$
 $closest vector bV$
 $closest vector bV^{\perp}$
 $closest vector bV$
 clo

Eq: Let
$$b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $V = Col \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
Find $bv =$ the orthogonal projection of b to V .
We set up the equations $ATA\hat{x} = ATb$:
 $ATA = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$
 $ATb = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
In augmented matrix form, $ATA\hat{x} = ATb$ is:
 $\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} v \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix}$
So $\hat{x} = \begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix} \implies b_{V} = A\hat{x} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix} = \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$
Check: $b_{V2} = b - b_{V} = \begin{pmatrix} v_{2} \\ -v_{2} \end{pmatrix}$
 $ATb_{V2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_{2} \\ -v_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\implies b_{V2} \in Nul(AT) = Col(A)^{1}$
Distance from $V = ||b - b_{V}|| = ||b_{V1}|| = ||\begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix}|| = \frac{1}{12}$

Procedure: To compute the orthogonal projection
by of b onto V=Col(A):
(1) Solve the equation ATA\$=ATB
(2) Then by=A\$ for any solution \$\$.
Then by=b-by, and the orthogonal
decomposition of b relative to V is
b=by+by+.
The distance from b to V is Iby+11.
Eq: Let b= (1) and V=Col(
$$\frac{1}{2} - \frac{1}{4} - \frac{1}{4}$$
).
Find the orthogonal decomposition of b relative
to V.
(1) ATA = $\begin{pmatrix} -1 & 2 & 1 \\ -1 & 4 & -1 \end{pmatrix}\begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 3 & 6 \\ 6 & 6 & 18 \end{pmatrix}$
 $ATb = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 4 & -1 \end{pmatrix}\begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 3 & 6 \\ 6 & 6 & 18 \end{pmatrix}$
 $ATb = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 4 & -1 \end{pmatrix}\begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}$

PVF
$$\hat{x} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

(2) by = A \hat{x} for any solution. Let's use
the particular solution:
 $b_{V} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
NB: $b_{V} = b$: what does that mean?
 b was already in V! More on this late:
Def: The normal equation of Ax=b is
AFAX = AFb
Fact: AFA \hat{x} = AFb is always consistent!
(Otherwise the Procedure wouldn't work.)
(Jhy? I claim (G1(AF) = (G1(AFA)).
From before: Nul(A) = Nul(AFA)!
Nul(A) = Row(A) = (G1(AF))
Nul(ATA) = Row(AFA) = (G1(AFA))^{T})
Nul(ATA) = Row(AFA) = (G1(AFA)^{T})
Nul(ATA) = Row(AFA) = (G1(AFA)^{T})
= (G1(AFA))

Since AT be Coll(AT) = Coll(ATA), the equation

$$ATA_{\hat{x}} = ATb$$
 is consistent:
NB: IF \hat{x} and \hat{y} both solve
 $ATA_{\hat{x}} = AT_{\hat{x}} = ATA\hat{y}$
then $O = ATA_{\hat{x}} - ATA\hat{y} = ATA(\hat{x}\cdot\hat{y})$
 $\implies \hat{x} - \hat{y} \in Nul(ATA) = Nul(A) \implies A(\hat{x}\cdot\hat{y}) = O$
 $\implies \hat{y} = A\hat{x} = A\hat{y}$. So any soln of ATA = ATb works.
Now we know how to project onto a column space.
What if $V = Nul(A)$?
Then $V^{\perp} = Nul(A)^{\perp} = Raw(A) = Col(A^{\perp})$.
So first compute by $x = projection onto a col space,$
then $b_{x} = b - b_{x} \perp$.
Procedure: To compute the orthogonal projection
by of b onto $V = Nul(A)$:
(1) Compute by $x = projection onto V^{\perp} = Col(A^{\perp})$
using the normal equation:
 $AT\hat{x} = Ab \longrightarrow b_{x} = A^{\perp}\hat{x}$
(2) $b_{y} = b - b_{y} \perp$

Es: Project b=
$$\binom{1}{8}$$
 onto V=Nul $\binom{1}{1}\binom{1}{1}\binom{1}{1}$.
We need to solve $AA^{T}\hat{x} = Ab$
 $AA^{T} = \binom{1}{1}\binom{1}{1}\binom{1}{2} = \binom{3}{2}\binom{2}{2}$
 $Ab = \binom{1}{1}\binom{1}{1}\binom{1}{0} = \binom{1}{1}$
 $\longrightarrow \binom{3}{2}\binom{2}{2}\binom{1}{1} \frac{\operatorname{rref}}{5} \binom{1}{0}\binom{1}{0}\binom{1}{1}\binom{2}{1}$
 $\sum \binom{3}{2}\binom{2}{1}\binom{1}{1} \frac{\operatorname{rref}}{5} \binom{1}{0}\binom{1}{1}\binom{1}{$

Then
$$\hat{x} = \frac{v \cdot b}{v \cdot v}$$
 as $by = A\hat{x} = \frac{v \cdot b}{v \cdot v} v$
Here's the formula:

Projection onto the Line Span
$$\{v\}$$

 $b_v = \frac{v \cdot b}{v \cdot v} v$

Eq: Project b=(b) onto V=Span
$$\{(1)\}$$
.
b_v = $\frac{\binom{1}{2} \cdot \binom{1}{2}}{\binom{1}{2} \cdot \binom{1}{2}} \binom{1}{2} = \frac{1}{2} \binom{1}{2}$
[demo]

Properties of Projections: recall
$$b=bv+bvx$$

(1) $bv=b \iff bvz=0$
 $\implies b \in V$
Think: the closest vector to b in V is b
 $\implies b \notin already in V.$
(2) $bv=0 \iff b=bvz$
 $\iff b \in V^{\perp}$
(3) $(bv)v=bv$ $(bv \in V; ux (i))$