The Method of Least Squares Setup: you have a matrix equation Ax = b which is (generally) inconsistent. What is the best approximate solution? What do ve mean by "best approximate solution"? Def: X is a least squares solution of Ax=b if Nb-AxII is minimized over all vector X. This means Ax is as close as possible to b. NB: $C_0I(A) = \{A\hat{x}: \hat{x} \in \mathbb{R}^n\}$, so $A\hat{x}$ is just the closest vector to b in V=Col(A). This is the orthogonal projection! $A\hat{x}=b_{v}$ for V=G(A)How do we compute by and $\hat{x}?$ \rightarrow IF \hat{x} is any solv of ATA \hat{x} =ATb, then Ax=by. So X is a least-squares solution!

Procedure (Least Squares):
To Find the least squares solution(s) of Ax=b:
(1) Solve the normal equation ATAX=ATB
(2) Any solution
$$\hat{x}$$
 is a least-squares solv
and $b_v = A\hat{x}$ for $V = Col(A)$.

NB: The error is the distance from Ax to b:
error = ||b-Ax|| = ||b-bu|| = ||bye||
Recall that ||b-Ax|| = ||bye|| is minimized:
if bye = (2) then
$$\sqrt{a^2+b^2+c^2}$$
, or equivalently
 $a^2+b^2+c^2 \in the minimized quantity.$
This is why it's called a least squares solution:
we're minimizing the sum of the squares of
the entrizes of b-Ax.

Eq: Find the least-squares solution of
$$Ax=b$$

for $A = \begin{pmatrix} 0 \\ i \\ 2 \end{pmatrix} b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$.

(1)
$$A^{T}A = \begin{pmatrix} 5 & 3 \\ 3 & 3 \end{pmatrix} A^{T}b = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

 $\begin{pmatrix} 5 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & 5 \end{pmatrix}$
(2) $\hat{X} = \begin{pmatrix} -3 \\ 5 \end{pmatrix} \xrightarrow{rref} \xrightarrow{rref} \begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & 5 \end{pmatrix}$
 $for V = A\hat{X} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$
The error $\overline{15}$
 $|b_{V} \perp|| = |b - b_{V}|| = || \begin{pmatrix} 6 \\ 6 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}| = || \begin{pmatrix} -2 \\ 1 \end{pmatrix}||$
 $= \int |^{2} + (-2)^{2} + |^{2} = |6|$.

Eq: Find the least-squares solutions of Ax=b
for
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$.
(1) $A^{T}A = \begin{pmatrix} 6 & 0 & 6 \\ 6 & 6 & 18 \end{pmatrix}$ $A^{T}b = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$
 $\begin{pmatrix} 6 & 0 & 6 \\ 6 & 6 & 18 \end{pmatrix} \stackrel{\text{ref}}{\longrightarrow} \begin{pmatrix} 1 & 0 & 1 & | & 2/3 \\ 0 & 1 & 2 & | & -1/3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$
(2) $\stackrel{\text{PVF}}{\longrightarrow} \hat{X} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} + X_{3} \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$

In this case there are infinitely many
least-squares solutions!
$$b_v = Ax$$
 for any \hat{x} . Take $\hat{x} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix}$
 $u_s b_r = \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $b_{v1} = b - b_v = O$
So the error is zero - the equation
 $Ax = b$ was consistent after all!
(Compare UGL2 pp. 4-5)

Observation 1: Ax=b has a unique least-squares soli A has full column rank! This is exactly when ATAX=ATb has a unique solution (ATA is invertible). Otherwise, there are infinitely many leastsquares solvs. This means 11b-AR11 is minimized for any such \hat{x} : $b_v = A\hat{x}$ for any solution \hat{x} . (There can't be zero least-squares solutions! $A^TA\hat{x} = A^Tb$ is always consistent.)

Observation 2: If Ax=b is consistent, then (least squares) = (ordinary) solutions) = (solutions).

Indeed, a least-squares soln is just a soln of
$$A\hat{x} = br$$
 ($V = G(A)$), and $b = br \Longrightarrow b \in G(A) \iff Ax = b$ is consistent.

Least-squares is often weful for fitting data to a model.

Eg (linear regression): Find the best-fit line z=Cx+D thru the data points (0,6), (1,0), (2,0).

If (0,6) lies on
$$y=Cx+D$$

then substituting $x=0, y=6$
would give $G=C\cdot O+D$. So
we want to solve:
(0,6): $G=C\cdot O+D$ in the CLD
(1,0): $O=C\cdot I+D$ unknowns
(2,0): $O=C\cdot 2+D$
ie Ax=b for $A=\begin{pmatrix} 2\\ 2\\ 1 \end{pmatrix} x=\begin{pmatrix} 2\\ 1 \end{pmatrix} b=\begin{pmatrix} 6\\ 3\\ 7 \end{pmatrix}$
NB: the data points are not collinear ~
no exact solution! (maybe measurement error).
We found a least squares solution before:
 $\hat{x}=\begin{pmatrix} -3\\ 5 \end{pmatrix}$ ~ best-fit line $y=-3x+5$
Important Question:
 $D=Ax=D$ for $A=\begin{pmatrix} 1\\ 2\\ 2\\ 1 \end{pmatrix} x=\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$

So
$$b_{y1}=b-A\hat{x}=\begin{pmatrix} -2\\ -2\\ \end{pmatrix}$$

 $=\begin{pmatrix} vertical distances\\ from y=-3x+5\\ the data points \end{pmatrix}$
 $y=-3x+5$ to
 $y=-3x+5$ to
 $y=-3x+5$ to
 $y=-3x+5$
 $y=-3x+5$

Eq (best-fit parabola):
Find the best-fit parabola
$$y = Bx^{2}+Cx+D$$

thru the data points $(-1,1/2), (1,-1), (2,-1/2), (3,2)$
Substitute the data points for
 $x \ dy \ y = x \ cant to solve$
 $(-1,1): \ 1 = B(-1)^{2} + C(-1) + D$
 $(1,-1): \ -1 = B(1)^{2} + C(1) + D$
 $(2,-1/2): \ -1 = B(2)^{2} + C(2) + D$
 $(3,2): \ 2 = B(3)^{2} + C(3) + D$
 $\rightarrow Ax = b$ for $A = \begin{pmatrix} 1 & -i & i \\ -1 & i & i \\ -1 & 2 & i \\ -1 & 3 & i \end{pmatrix} x = \begin{pmatrix} \beta \\ C \\ 0 \end{pmatrix} b = \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 2 \end{pmatrix}$

Let's find the least-squares solution.

$$A^{T}A = \begin{pmatrix} q q & 35 & 15 \\ 37 & 15 & 5 \\ 15 & 5 & 4 \end{pmatrix} \quad A^{T}b = \begin{pmatrix} 31/2 \\ 7/2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} q q & 35 & 15 \\ 37 & 15 & 5 \\ 15 & 5 & 4 \\ 1 \end{pmatrix} \stackrel{71/2}{\longrightarrow} \stackrel{RPEF}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{pmatrix} \stackrel{73}{\longrightarrow} \stackrel{73}{\longrightarrow} \stackrel{73}{\longrightarrow} \stackrel{73}{\longrightarrow} \stackrel{74}{\longrightarrow} \stackrel{74}{\longrightarrow}$$

So by = b-Ax = vertical distances from the to the data points, like before.

This same method works to find a best-fit function of the form y=AftBgtCht. where figh,... are really any functions! Just plug the x-values of your data points into figh -> I mear equations Jor A, B, C, .-

Eg (best-fit trogonometric function): see \$6.5 in ILA for an example. This real-life example of Gauss was in the first lecture:

Eg: An asteroid has been observed at condinates: (0,2), (2,1), (1,-1), (-1,-2), (-3,1), (-1,1)Question: What is the most likely orbit? Will the asteroid Crash into the Earth? Will the esteroid Crash into the Eart Fact: The orbit is an II.

ellipse.

Equation for an ellipse: $X^2 + By^2 + Cxy + Dx + Ey + F = 0$

For our points to lie on the ellipse, substitude
the coordinates into
$$(x_{1,y})$$
 we these should hdd:
 $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$: $O + 4B + O + O + 2E + F = O$
 $(2,1)$: $4 + B + 2C + 2D + E + F = O$
 $(1,-1)$: $1 + B - C + D - E + F = O$
 $(1,-1)$: $1 + B - C + D - 2E + F = O$
 $(-1,-2)$: $1 + 4B + 2C - D - 2E + F = O$
 $(-1,-2)$: $1 + 4B + 2C - D - 2E + F = O$
 $(-1,-2)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$: $1 + B - C - D + E + F = O$
 $(-1,-1)$:

$$Ax - b = \begin{pmatrix} 4 & 0 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 4 & 2 & -1 & -2 & 1 \\ 1 & -3 & 1 & -3 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{pmatrix} x - \begin{pmatrix} -4 \\ -1 \\ -1 \\ -4 \\ -1 \\ -4 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0^{2} + \frac{405}{216}(z)^{2} - \frac{89}{133}(9(z) + \frac{201}{133}(0) - \frac{123}{216}(z) - \frac{687}{133}) \\ y^{2} + \frac{405}{216}(1)^{4} - \frac{89}{133}(9(1) + \frac{201}{133}(z)) - \frac{123}{216}(z) - \frac{687}{133}) \\ 1^{2} + \frac{405}{216}(z)^{4} - \frac{89}{133}(1)(z) + \frac{201}{133}(1) - \frac{123}{216}(z) - \frac{687}{133}) \\ (-1)^{2} + \frac{405}{216}(z)^{2} - \frac{89}{133}(z)(z) + \frac{201}{133}(z) - \frac{123}{216}(z) - \frac{687}{133}) \\ (-1)^{2} + \frac{405}{216}(z)^{2} - \frac{89}{133}(z)(z) + \frac{201}{133}(z) - \frac{123}{216}(z) - \frac{687}{133}) \\ (-1)^{2} + \frac{405}{216}(z)^{2} - \frac{89}{133}(z)(z) + \frac{201}{133}(z) - \frac{123}{216}(z) - \frac{687}{133}) \\ (-1)^{2} + \frac{405}{216}(z)^{2} - \frac{89}{133}(z)(z) + \frac{201}{133}(z) - \frac{123}{216}(z) - \frac{687}{133}) \\ (-1)^{2} + \frac{405}{216}(z)^{2} - \frac{89}{133}(z)(z) + \frac{201}{133}(z) - \frac{123}{216}(z) - \frac{687}{133}) \\ This was what you get by substituting the x- and y-values of the date points into the LHS of x- and y-values of the date points into the LHS of x- and y-values from zero. [deno] Upshot: You're minimizing IIb - Axil; it's up to you to interpret that queutity.$$