Math 218D Problem Session

Week 3 Solutions

1. Finding PA = LU

a)
$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix}, U = \begin{pmatrix} 2 & 2 & 5 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & -\frac{3}{2} \end{pmatrix}.$$

b) $L = \begin{pmatrix} 1 & 0 & 0 \\ -10 & 1 & 0 \\ 5 & -1 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -10 & -20 \\ 0 & 0 & -15 \end{pmatrix}.$
c) $P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ -0.1 & -0.2 & 1 \end{pmatrix}, U = \begin{pmatrix} -10 & -20 & -30 \\ 0 & 5 & -5 \\ 0 & 0 & -3 \end{pmatrix}$

2. Solving
$$Ax = b$$
 using $PA = LU$

a)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 5 \\ 1 & 2 & 3 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix}, U = \begin{pmatrix} 2 & 2 & 5 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & -\frac{3}{2} \end{pmatrix}.$$

•

b) $Pb = \begin{pmatrix} 5\\ 2\\ 1 \end{pmatrix}$. *P* swaps the first and second raws, and then swap the second and third rows of *b*.

c)

$$\begin{array}{rcl} c_1 & = 5\\ \frac{1}{2}c_1 & +c_2 & =2\\ \frac{1}{2}c_1 + 0c_2 + c_3 & = 1\\ \end{array}$$

and substitution gives $(c_1,c_2,c_3) = (5,-\frac{1}{2},-\frac{3}{2}). \end{array}$

d)

$$2x_1 + 2 \quad x_2 + 5x_3 = 5$$

$$x_2 + \frac{1}{2}x_3 = -\frac{1}{2}$$

$$- \frac{3}{2}x_3 = -\frac{3}{2}$$
and substitution gives $(x_1, x_2, x_3) = (1, -1, 1)$.

,

e) Check
$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 5 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$$
.

- **3.** Parametric forms
 - **a)** The RREF is $\begin{pmatrix} 1 & 0 & 1/3 & | & 1/3 \\ 0 & 1 & 2/3 & | & -1/3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$
 - **b)** The parametric form of the solution is:

$$x_1 = -\frac{1}{3}x_3 + \frac{1}{3} \\ x_2 = -\frac{2}{3}x_2 - \frac{1}{3} \\ x_3 = x_3$$

Setting $x_3 = 0$ gives one solution: $(x_1, x_2, x_3) = (1/3, -1/3, 0)$. Setting $x_3 = 1$ gives another solution $(x_1, x_2, x_3) = (0, -1, 1)$.

c) The parametric vector form is:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \cdot \begin{pmatrix} -1/3 \\ -2/3 \\ 1 \end{pmatrix} + \begin{pmatrix} 1/3 \\ -1/3 \\ 0 \end{pmatrix}.$$

- **d)** The line passes through the point (1/3, -1/3, 0), and goes in the direction of the vector (-1/3, -2/3, 1).
- e) This system of equations has no solutions.

. . .

f) The parametric vector form of this system is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \cdot \begin{pmatrix} -1/3 \\ -2/3 \\ 1 \end{pmatrix}.$$

The solution to the homogeneous equation is a line, parallel to the line from part d), passing through the origin.

g) A vector
$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 makes $Ax = b$ consistent precisely when $-b_1 + b_2 - b_3 = 0$.

h) The span of these vectors is the same as the set of vectors making Ax = b consistent. By g), this is the same as the vectors which satisfying a single linear equation. The set of vectors satisfying a single linear equation is a plane.