Matrix Form's let
$$u(t) = (H(t), I(t), D(t)).$$

 $\frac{du(t)}{dt} = u(1) = \begin{bmatrix} -0.3 & 0.9 & 0\\ 0.3 & -0.9 - 0.1 & 0\\ 0 & 0.1 & 0 \end{bmatrix} u(t)$

Def: A system of linear ordinary differential equations (ODEs)
is a system of equations in unknown functions
$$u_1(t), ..., u_n(t)$$
 equating the derivatives u_i^* with a
linear combination of the u_i^*
 $u_i^*(t) = a_u u_i(t) + \dots + a_{in} u_n(t)$
 $u_i^*(t) = a_u u_i(t) + \dots + a_{in} u_n(t)$
 $u_i^*(t) = a_u u_i(t) + \dots + a_{in} u_n(t)$
 $u_i^*(t) = a_u u_i(t) + \dots + a_{in} u_n(t)$
 $u_i^*(t) = u_i(t) + \dots + u_n(t), \dots, u_n(t))$ and
 $u_i(t) = (u_i(t), \dots, u_n(t)), a system of linear ODEshas the form$

u'(t) = Au(t)

for an nxn matrix A (with numbers in it, not functions of t). If you also specify the initial value u(o) = Uo, this is called an initial value problen. some vector

How to solve a system of Imear ODEs? Dragonalize A! Eg: Suppose us is an eigenvector of A: Au.= Juo. Then the solution of the mitral value problem u'=Au $u(o)=u_o$ is $u(t)=e^{xt}u_o$: u'(t)= de entre herre. Ault)=Aetus=etAus= hetus $\kappa(\vartheta) = e^{\vartheta t} u_{\vartheta} = u_{\vartheta}$ In general, we expand us in an eigenbosis, as for difference equations: $U_0 = X_1 \omega_1 + \cdots + X_n \qquad A \omega_i = \lambda_i \omega_i$ us ult)= ehitxwi+ ...+ ehit Xnwn is the solution of u'=Au, $u(o)=u_o$. Check: $u'(f) = \lambda_i e^{\lambda_i t} x_i \omega_i + \dots + \lambda_n e^{\lambda_n t} x_n \omega_n$ $A_{u}(t) = e^{\lambda_{1}t} x_{1} A_{\omega_{1}} + \dots + e^{\lambda_{n}t} x_{n} A_{\omega_{n}}$ $= \lambda_i e^{\lambda_i t} x_i \omega_i + \dots + \lambda_i e^{\lambda_i t} x_n \omega_n$ $u(0) = e^{0t} \times i\omega_1 + \dots + e^{0t} \times i\omega_n = u_0$

Es: In our infectious disease model, suppose

$$u_0 = (1002, 1, 0)$$
 (1000 healthy people,
1 infected, 0 dead)
Eigenvalues of $A = \begin{pmatrix} -0.3 & .9 & 0 \\ 0.3 & .1 & 0 \end{pmatrix}$ are
 $\lambda \approx -.0235$
 $\lambda_1 \approx -1.28$
 $\lambda_3 = 0$
Eigenvectors are
 $u_1 \approx \begin{pmatrix} 11.77 \\ -12.77 \end{pmatrix}$ $u_2 \approx \begin{pmatrix} -.765 \\ -.255 \end{pmatrix}$ $u_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
Solve $u_0 = \chi_{,u_1} + \chi_{,s} u_{,2} + \chi_{,s} u_{,3}$:
 $u_0 = \begin{pmatrix} 1000 \\ 0 \end{pmatrix} \approx 18.70$ $u_1 = 1019.70$ $u_2 + 1001$ u_3
Solution is:
 $u_1(t) = e^{-.0235t} \cdot 18.70 u_1 - e^{-1.28t} \cdot 1019.70 u_2 + 1001 u_3$
H(t) = 220 $e^{-.0235t} + 780 e^{-1.28t}$
 $D(t) = 18.7e^{-.0235t} - 1019.7e^{-1.28t} + 1001$

Procedure for solving a linear system of ODES
using diagonalization:
To solve u' = Au, u(0) = uo when A is
diagonalizable:
(1) Diagonalize A: get en eigenbasis sugars?
with eigenvalues
$$\lambda_{U-1} \lambda_{n}$$
.
(2) Expand us in the eigenbasis:
solve u.= x, w, +...+ x, wn
Solution:
u(t) = e^{k,t} x, w, +...+ e^{k,t} x, wn
Compare to:
Procedure for solving a Difference Equation
wing diagonalization:
To solve V_{n+1} = AVK, vo fixed when A is
diagonalizable:
(1) Diagonalize A: got en eigenbasis sugars?
with eigenvalues $\lambda_{U-1} \lambda_{n}$.
(2) Expand vo in the eigenbasis sugars?
Solve V_0 = x, w, +...+ x, wn
Solution:
(2) Expand vo in the eigenbasis:
solve V_0 = x, w, +...+ x, wn
Solution:
V_k = Xt x, w, +...+ x, wn

This works fine with complex eigenvalues. As with
difference equations, you can write the solution with
real numbers using tring functions.
Eq:
$$W'(t) = u_2$$
, $u_2(t) = -4u_1$,
 $u_1(0) = 2$ $u_2(0) = 0$
 $w u' = Au$ for $A = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} u(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
Eigenvalues are $\lambda = 2i$, $\overline{\lambda} = -2i$
Eigenvectors are $w = \begin{pmatrix} 2 \\ 2i \end{pmatrix} \tilde{w} = \begin{pmatrix} -2i \\ -2i \end{pmatrix}$
Silve $\begin{pmatrix} 3 \\ 0 \end{pmatrix}^2 = X_1 u + X_2 \overline{w} - S - X_1 = X_2 = 1$
 $u(t) = e^{X_1} u + e^{X_1} \overline{w} = 2Re\left[e^{X_1} w\right]$
 $= 2Re\left[e^{2it} \begin{pmatrix} 1 \\ 2i \end{pmatrix}\right] = 2Re\left[(\cos(2t) + i\sin(2t))(\frac{1}{2t})\right]$
 $= 2Re\left((\cos(2t) + i\sin(2t)) = (2\cos(2t)) + i\sin(2t))(\frac{1}{2t})\right]$
 $(heck: u_1' = (2\cos(2t))' = -4\sin(2t) = u_2$
 $u_3' = (-4\sin(2t))' = -8\cos(2t) = -4u_1$
 $u_1(0) = \ge u_2(0) = 0$

This method can also be used to solve (linear)
ODEs containing high - order derivatives.
Eg: Hooke's has says the force applied by a
spring & proportional to the
amount it is stretched or
compressed:

$$F(t) = -k p(t)$$
 is >0
 $F = may$ a = acceleration = p": replace k by Km:
 $p"(t) = -k p(t)$
Trick: Let $u_i = p$, $u_k = p!$. Then
 $u_i' = u_k$ $u_k' = -ku_i$.
This is the system
 $u'(t) = \binom{0}{-k} \binom{1}{0} u(t)$.
We solved this before for $k = 4$, $u(0) = (2:0)^{-1}$
 $p'(t) = -4sin(2t)$

The Matrix Exponential
There are 2 features missing from the CDE= picture
that we had for difference equations:
(1) Matrix form:
$$V_k = CD^kC^{-1}V_*$$

(2) Existence of solutions:
it's obvious that $V_k = A^k V_*$ has a solution
- it was not obvious how to compate it.
Both can be filled in using the matrix exponential.
Recall: Using Taylor expansions, you can write
 $e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$ (convergent sum)
Def: Let A be an n×n matrix. The matrix
 $e^A = I_n + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$ (convergent sum)
Eq: $A = (0, 0) \longrightarrow A^2 = 0$, so
 $e^{At} = I_* + At + 0 + \cdots = (0, 1)$

Eq:
$$A = \begin{pmatrix} \lambda_{1} & \lambda_{2} \\ 0 & \lambda_{2} \end{pmatrix} \longrightarrow A^{k} = \begin{pmatrix} \lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k} \end{pmatrix}, so$$

 $e^{At} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2}^{k} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \lambda_{1}^{3} t^{2} & \frac{1}{2} & \lambda_{1}^{3} t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \lambda_{1}^{3} t^{2} & \frac{1}{2} & \lambda_{1}^{3} t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \lambda_{1}^{3} t^{2} & \frac{1}{2} & \lambda_{1}^{3} t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \lambda_{1}^{3} t^{2} & 0 \\ 0 & e^{\lambda_{1}} & 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \lambda_{1}^{3} t^{2} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} = \begin{pmatrix} e^{\lambda_{1}} & 0 \\ 0 & e^{\lambda_{1}} & t^{3} \end{pmatrix} + e^{2t} + e^{\lambda_{1}} & t^{3} \end{pmatrix} + e$

The equations

$$e^{At} = Cc^{Dt}C^{-1}$$
 and $A^{k} = CD^{k}C^{-1}$
are also analogous' they are computable!
In fact, if you expand out
 $u(t) = Ce^{Dt}C^{-1}uo$
you exactly get the vector form
 $u(t) = e^{A_{1}t}x_{1}w_{1} + \dots + e^{A_{n}t}x_{n}w_{n}$
where $(x_{1},\dots,x_{n}) = C^{-1}w_{0}$.
Difference Equation Dictionary Initial Value Abblen
 $V_{k+1} = Av_{k}$ vs fixed Problem $u'(t) = Au(t) u(s)$ fixed
 $V_{k} = A^{k}v_{0}$ Uncomputable $u(t) = e^{At}u(s)$

$$V_{k} = \lambda_{i}^{k} X_{i} w_{i} + \dots + \lambda_{n}^{k} X_{n} W_{n} \quad Computable \quad u(t) = e^{\lambda_{i} t} X_{i} w_{i} + \dots + e^{\lambda_{n} t} X_{n} W_{n}$$
for $V_{0} = X_{i} w_{i} + \dots + X_{n} W_{n}$ Solution for $u(d) = X_{i} w_{i} + \dots + X_{n} W_{n}$
(when diagonalizable)
$$A^{k} = CD^{k}C^{-1} \qquad Matrix \qquad e^{At} = Ce^{Dt}C^{-1}$$
Form