
 

Geometry of the SVD
We have drawn pictures of a triple product
decomposition before
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SVD A I 8 WENT for

U 1 I K 1 5 a 15
To evaluate Ax UE.VE
1 multiply by VT G multiply by E 23 multiply by U

But U and VT are orthogonal so thesejust rotate flip
A 1 rotateflip 2 stretch 13 rotateflip
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Notes caveats

Dragonalization start end in w we basis
SVD startwith u u end with a uh basis

Different bases

The Vt U steps preserve lengths angles
rotations flips us easier to visualize

The E step can flatten a sphere in the same IR
I

Axllet
it

ÉH

Q lintyplane

project onto the xy plane then stretch

The E step can change dimensions

I Allel

if i i I
2111 1

project onto the xy plane forget the z coordinate
then stretch



Principal Component Analysis PCA

This is SVD 00 in stats language

it's often how SVD for linear algebra is used

in statistics data analysis
it makes precise statements about fitting data to
lines planesfete and how good the fit is

Idea If you have n samples of m values each
columns of an mxn data matrix

Let's introduce some terminology from statistics

One Value mel

Let's record everyone's scores on Midterm 3
samples X Xn

Mean average met x t Xa

Variance s x m
t xnmy

Standard Deviation s variance
This tells you how spaced out the samples are

168 of samples are within IS of the mean
Wheredo these formulas come from

Take a stats class



Eg Actual midterm 3 scores from Fall 20

M78

4
268 ofscores

Two Values m 2
are in this range

Let's record everyone's scores on problems 182
on Midterm 3

samples Y In A score on problem 1
Yi score an problem 2

Mean scores
Problem 1 Mi f x ta xn

Problem 2 Matty e ya

Recenter to compute variance
Xi Xi Mi Si yo Mz subtract means

Variance
Problem 1 silent ft txt

Problem 2 set g't yet

Total Variance 5 5 5



Eg scares 1 1 81,111,1 1,191,141,13 Ms
µs 8

recenter 5,1 31,1 1,181,141.114.17
Yi
16h 8

g
o

12 4
subtract centered

8 T
means07means
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i 4 8 12
Xi 8 5 0 3 7 11

Store in matrices

A 15 Y 18 1 81
A E E 1118 1 E



Covariance Matrix

S AAT I
row 1 low1 Crawl Crowas

new2 row 1 row2 row2

tie txt att Inga
t Inga yet tyn

The diagonal entries are the variances

The trace is the total variance

The off diagonal entries are called covariances

Eg the 11,2 entry is

new 1 Crow 2 Igt Inga
If this is positive then I yi generally have
the same sign if you did above average on P1
then you likely did aboveaverage on P2 too
vice versa The values are correlated

If this is negative then I dye generally have
opposite signs if you did above average on P1
then you likely did below average on P2
vice versa The values are anti correlated

If this is almost zero then the values are
not correlated



In our case

S 3AAT E s
2 20

53 40

1,2 covariance 25 0 people who did above
average on PI likely did above average on P2

The SVD will tell us which directions have the
largest smallest variance

column means 0

Def let A be a recentered data matrix

A di din where di II it recentereddata pain

Let Sa AAT be the covariance matrix
Let meRm be a unit rector
The variance in the u direction is

sus uts u

NB S Luk ut AAT u LUTA ATU I CATATCATUS
Atu Atu tellAtall

since Ata III Ju III we get

slash atSu latin t than ut



NB The mean of di di is zero so O dit tda
each coordinate has mean O sums to o

Hence O O u late tda u di a t din

so it makes sense to compute the variance of
these numbers din Hi u with mean zero

slu latin t than ut

Eg If u 8 e then di u É d si so

slu sled t txt s

This is just the variance of the Xi's

In general sheiks

Picture Recall that if a is a unit rector then

Iv a u projection of n onto Sparta
ra v a halt Illusall length of the

projection of n onto Sparta

wellI I E
I Spanfudu u

length Lau Ing I
Spanked length I



Eg With our data before take u in the picture
franca di Ii

1 Latin u

o 0 M slate sum of squares of
a distances from the

É o y 1
to Zero

New we apply the SVD 00 to A times ta

At Gavitt taunt us At a nut torment
normalization factor

The oil are the nonzero eigenvaluesof the covariancematrix

S AAI II A EA
this is why we used Fit
Quadratic Optimization

U maximizes slub utSu subject to Hull 1
with maximum value of

Therefore

u is the direction of greatest variance
g slur variance in the u direction



ur data points are stretched out most in the a direction

Jef the u direction is the first principal component
of A

no Danfu
In our example

A quiet aunt for
o a Iliffe92 56.9 a'I 3.07
y

ur 8 88 us 1 31 sis

di projection of onto Span us

So the first principal component is a and the
variance in that direction is 456.9

NB this is greater than the Problem 1 variance 20

the Problem 2 variance 40


