



































































































































Geometryof the SVD II

Here we give a geometric interpretation of the
outer product form that will be useful for the PCA

A aunt t tarcenunt

Avi aai Ata or
A di di

Expand out

avi Ata III u
o

Gidi vie Ui Lovitt ni di di da ai

Hindu ldny.su

Since Haillel

Ld a ai orthogonal projection of d onto Span a

The columns of quirt are the
orthogonal projections

of the columns of A onto Sparta

Now lookat the sum

A aunt t tarcenunt






































































































































The ith column of this sum is

iffy di di edu t di un ur

Since Eau sur is an orthonormal basis of Col A
this is just the projection formula as applied to
di the projectionof di onto Col A is just di
since disco A lit's the ith column of A

Eg A I 81 I 7 from last time

A aunt aunt
QI 16.9 Oak 3.92 8 a

spanfu

4 185 u 1 31

di 7 I
85 o s 7columns of quirt

projections of onto Span u
r

columns of Quant
projections of onto Span far

NB r

So SVD pulls apart the columns of A in us sur
components



Review DCA so far
A d din

men data matrix with n samples data points
of m measurements each in the columns

A fi di A Mini mi mean of row

recentered data matrix obtained fromA by
subtracting the means of the measurements Crews

rows row1 row 1 Go 2

5 1 AAI Gov 2 town Crow2 iron

mem covariance matrix containing the variances of
the measurements on the diagonal

rani roni fit I s

total variance is s sit tsin Tr s

NB total variance is just
s sit tsk x.tt txt t t time xii

hi sum of squares of all entries of A
a lldill't think

For me Rn lull 1 the variance in the u direction is

slukutsu flat a t o t ldi.at



If 92 is the largest eigenvalue of S then this
is maximized at a unit a eigenvector u w maximum
value of

U is the firstprincipal component of A

Eg A g Y 48 1 E f 3 Ms

A É E L 1
us 8

S 3AAT I II 5 20 40 60

48

Danfu

92 56.9

a 8 8 East
8É o 3 7

di projection of onto Span us

So the first principal component is a and the
variance in that direction is 456.9 20,40

Our data points are stretched out most in the
a direction



NB Here's how I should butwon't grade the final exams

Put the scores of each problem in an men matrix to
m problems ne students

Subtract ooo averages fun sum to recenter

matrix A d din

Compute the 1 principal component a

D I D max score on problem j

The score for student i is

9 percent

This maximizes the standard deviation by reweighting

the problems



Key Point Eigenvalues eigenvectors of

SEA AT A LEAST
compute the SVD of E A and At
A aunt t aunt At a nut torment

NB the SVD of A is

A Flaunt t tiny Grunt
r ai z 7 of 0 nonzero eigenvalues of S
NB the singular values of A are Fig For

The trace of a square matrix is the sum ofits eigenvals

total variance s Toys at ta
Aw

us our orthonormal eigenvectors of S
left singular vectors of A of A

Vi f f Atu
right singular vectors of A of A

Def The ith principal component of A is the
direction of ai

We knew the 1st principal component is the direction of

largest variance What about the higher principal components



00 with Extra Constraints

slab's utsa is maximized

subjectto talk
at u with sludge

a is the directionwith largest variance

Slu is maximized

subjectto hall l and at u
at us with slur at

us is the directionwith 2nd largest variance

Slu is maximized

subjectto hall l and at us Utu it

at us with s lui o

ur is the directionwith ith largest variance

NB ur is the directionwith smallest variance if mm

The columns of Flauirit are the orthogonal
projections of the columns of A onto SpanTui

A Equiv.tt Faint
breaks apart your data points into components

Faint piece m the direction of the
ith largest variance



Eg In our example 6 A quivittguist

92 56.9 05 3.07

Uk 8 86 us 9 1 8 a
and

4

5 5 45 Total variance

5 60 6,2 65 r s É flangessi 20 95 40 variance
4 smallest

di
85 Y t t 11columns of Fount

projections of onto Span u
r

columns of Faust
projections of onto Span far

NB In this case slat is minimized at us with
minimum value Oi smallest eigenvalue of S
stud dins t daud

sun of squares of lengths of

Conclusion The first principal component is the
lineof best fit in the sense of orthogonal least

squares and the

lemon In 1 slay In 1 of



Subspace s of Best Fit
What happens in general

Def Let V be a subspace of R The variance

along V of our Irecentered data points dis di is

slr llldiulte tllld.lv l
Porthogonal projections

NB If V Span a for u a unit rector then
Cair Cdi a u so Aldi v11 Idi a Hulk dial
so

s V III a t o din s u

Recall if u tr then Muerte lull't lull

Taking a di v k di it gives digf.gl drt
Adil Aldi ult'tAldi all decomposition

Sum over all i

For any subspace Vs

sluts VI Hail't Halt

g3
total variance qt ta



NB s v4 I llld.su e tllldnlrtt
is I x the sum of the squares of the orthogonal
distances of the di to V

Jef The d space of best fit in the sense of
orthogonal least squares is the d dimensional
subspace V minimizing s rt The error is slut

NB Minimizing s Vt means maximizing s r

since s v t s rt total variance

Then let A be a centered data matrix with SVD
A quintt torerunt

Thed space of best fit to its columns is

V Span us sad

The variance along V is s V at tod and the
error is s Vt aft to

Eg The line of best fit is the first principal
component Vespansuit The error ait to



Eg The plane of best fit is the span of the first
2 principal components V Span u ur error East tort

Eg Suppose

A 10 unit 8azvatt 2usu.tt tune
Then A fits the plane VaSpanky.cn to

a small error 27.1

But A does not fit the line L Spann
well the errors 84.24.1

Upshot If a od are much larger than Oda so

then your data closely fit the d space
V SpanGuy gud

but not a smaller subspace like Span us nude

NB This is all applied to the recentered data points
Your original data points dis dn columns of A
fit the translated subspace

Ve Mum add back the means

See the Netflix problem on HW 15


