Geometry of the SVD II
Here we give a geometric interpretation of the
outer preduct from that will be useful for the PCA.

$$A = \sigma_{(u)v_i^T} + \dots + \sigma_{(u)v_i^T}$$

 $A = (d_{i} \cdots d_{i})$
 $A = (d_{i} \cdots d_{i})$
 $A = (d_{i} \cdots d_{i})$
 $Expand out:$
 $\sigma_{i}v_{i} = A^{T}u_{i} = (-d_{i}^{T})u_{i} = (d_{i} \cdots d_{i})$
 $\equiv (d_{i} \cdots d_{i})$
 $\equiv (d_{i} u_{i}) = u_{i}(\sigma_{i}v_{i})^{T} = u_{i}(d_{i} \cdots d_{i}v_{i})$
 $\equiv (b_{i}u_{i})u_{i} \cdots (b_{i}^{T}u_{i})u_{i})$
Since $||u_{i}|| = l$
 $(d_{i}u_{i})u_{i} = orthogonal projection of d onto Span Suiz.$
The columns of $\sigma_{i}u_{i}v_{i}^{T}$ are the
 $orthogonal projections$
of the columns of A onto Spansuiz.

Now look at the sum: A= or unit +...+ or unit

The ith column of this sum is:

$$\frac{1}{64A} \rightarrow d_{i} = (d_{i} \cdot u_{i})u_{i} + \dots + (d_{i} \cdot u_{i})u_{n}$$
Since $x_{u_{i} \dots + u_{i}}$ is an orthonormal basis of Col(A),
this is just the projection formula as applied to
 d_{i} : the projection of d_{i} onto Col(A) is just d_{i}
since $d_{i} \in Col(A)$ (it's the ith column of A).
Eq: $A = \begin{pmatrix} 3 & -4 & 7 & i & -4 & -3 \\ 2 & -6 & 8 & -1 & -1 & -7 \end{pmatrix}$ (from last time)
 $A = a_{u_{i}v_{i}} + a_{u_{2}v_{s}}$
 $a_{i} \approx 16.9$ $a_{i} \approx 3.92$
 $u_{i} \approx \begin{pmatrix} 0.561 \\ 0.828 \end{pmatrix}$ $u_{i} \approx \begin{pmatrix} 0.828 \\ -0.561 \end{pmatrix}$
 $= d_{i} = \begin{pmatrix} 3 \\ -7 \end{pmatrix}, \begin{pmatrix} -4 \\ -6 \end{pmatrix}, \dots$
 $= columns of a_{u_{2}v_{s}}$
 $= projections of o onto = span i u.i$
 $= projections of o onto = span i u.i$
 $NB^{i} = = + 1$
So SVD "pulls apart" the columns of A in $u_{v_{s}}$ where
 $components$

Review: PCA so far

$$A_{o} = (A, \dots, A_{n}):$$

man data matrix with a samples (data points)
of m measurements each in the columns
 $A = (\overline{A}, \dots, \overline{A}_{n}) = A - (M, \dots, M_{n})$ $M_{i} = mean of now:$
recentered data matrix obtained from A by
subtracting the means of the measurements (nows)
 $S = \frac{1}{n-1}AA^{T} = \frac{1}{n-1} (\frac{1}{(n+1)}(n+1)(n+1)(n+2)(n+2)}{(n+2)(n+2)(n+2)(n+2)})$
main covariance matrix containing the randomies of
the measurements on the disaponal:
 $\frac{1}{n-1}((n+1)\cdot(n+1)) = \frac{1}{n-1}(\overline{X}_{1}^{2} + \dots + \overline{X}_{n}^{2}) = S_{1}^{2}$
 $\rightarrow fotal variance is $S^{2} = S_{1}^{2} + \dots + S_{n}^{2} = Tn(S)$
NB: total variance is just
 $S^{2} = S_{1}^{2} + \dots + S_{n}^{2} = n-1(\overline{X}_{1}^{2} + \dots + \overline{X}_{n}^{2}) + \dots + \frac{1}{n-1}(\overline{X}_{1}^{2} + \dots + \overline{X}_{n}^{2})$
 $= \frac{1}{n-1}(||\overline{U}_{1}||^{2} + \dots + ||\overline{U}_{n}||^{2})$
For $u \in \mathbb{R}^{n}$, $\|u\|=1$, the variance in the undirection is
 $S(u)^{2} = u^{T}S_{u} = \frac{1}{n-1}[(\overline{U}, u)^{2} + \dots + (\overline{U}_{n} u)^{2}]$$

Key Point: Eigenvalues & eigenvectors of
S= tAAT = (tA)(tA)
compute the SVD of tA)
the A and tAT!
the A = orun. + + orun. & tA = orun. + orun.
NB: the SVD & A is
A = In-1 orun. + + + In-1 orun.
NB: the SVD & A is
A = In-1 orun. + + + In-1 orun.
NB: the SVD & A is
NB the origular values of A are In-100-JANGOR
The trace & a square matrix is the sum of its eigenvector
that take of a square matrix is the sum of its eigenvector
that take of a square matrix is the sum of its eigenvector
that take of a square matrix is the sum of its eigenvector
that take of a square matrix is the sum of its eigenvector
that workare = s² = Tr(S) = or²+...+or²
(Huill)
Us..., Ur = orthonormal eigenvectors of the A (& of A)

$$V_{i} = \frac{1}{\sigma_{i}} \cdot \frac{1}{J_{n-1}} A^{T} u_{i}$$

= right-singular vectors of Jan A (& of A)
Def: The it principal component of A is the
direction of u_{i}.
We know the 1st principal component is the direction of
largest variance. What about the higher principal components?

In our example,
$$\int_{6^{-1}}^{1} A = quiviT + gu_2v_3^T$$

 $q_1^2 \lesssim 56.9$ $q_2^2 \approx 3.07$
 $u_1^{u} \begin{pmatrix} 0.561\\ 0.828 \end{pmatrix}$ $u_3^{u} \begin{pmatrix} 6.828\\ -0.561 \end{pmatrix}$
 $S = \begin{pmatrix} 20 & 25\\ 25 & 40 \end{pmatrix}$ Ideal variance
 $s^2 = 20 \quad q_2^2 = 40$ $s^2 = 60 = 6_1^2 + 6_2^2$
 $e = di$
 $e = di$
 $e = columns$ of $J = 6_1 + 6_2$ u_1^{u} u_2^{u} u_3^{u} u_4^{u} u_5^{u} $u_$

NB: In this case, $s(u)^2$ is minimized at u_2 with minimum value $\sigma_2^2 = smallest$ eigenvalue of S. $s(u_2)^2 = \frac{1}{n-1} [(d_1 \cdot u_2)^2 + \cdots + (d_n \cdot u_2)^2]$ $= \frac{1}{n-1} [(sun of squares of lengths of <math>\sqrt{3}$]

Conclusion: The first proncipal component is the line of best fit in the sense of orthogonal least squares, and the $(error)^2 = (n-1)s(u_2)^2 = (n-1)o_2^2$

Subspace (s) if Best Fit
What hoppens in general?
Def: Let V be a subspace of IRⁿ. The variance
along V of our (recentered) data points
$$\overline{d}_{U-1}, \overline{d}_{n-1}$$
 is
 $s(V)^2 = \prod_{n=1}^{n} (\|la|v||^2 + \dots + \|la|v||^2)$.
 $s(V)^2 = \prod_{n=1}^{n} (\|la|v||^2 + \dots + \|la|v||^2)$.
NB: IF V=Span fuß for u a unit rector then
 $(\overline{d}_i)_V = (\overline{d}_i \cdot u)u_i$, so $\|ld_i\rangle_V\|^2 = |d\overline{d}_i \cdot u)^2 \|u\|^2 = (d\overline{d}_i \cdot u)^2$.
NB: IF V=Span fuß for u a unit rector then
 $(\overline{d}_i)_V = (\overline{d}_i \cdot u)u_i$, so $\|ld_i\rangle_V\|^2 = |d\overline{d}_i \cdot u)^2 \|u\|^2 = (d\overline{d}_i \cdot u)^2$.
NB: IF V=Span fuß for u a unit rector then
 $(\overline{d}_i)_V = (\overline{d}_i \cdot u)u_i$, so $\|ld_i\rangle_V\|^2 = |d\overline{d}_i \cdot u)^2 \|u\|^2$.
NB: IF u = v then $\|u_V v\|^2 = |u||^2 + |u||^2$.
Recall: if u = v then $\|u_V v\|^2 = \|u\|^2 + \|u\|^2$.
Taking u = $|d\overline{d}_i\rangle_V$ & $v = (d\overline{d}_i)_V = gives d\overline{d}_i = (d\overline{d}_i)_V + (d\overline{d}_i)_V = give d\overline{d}_i = (d\overline{d}_i)_V + (d\overline{d}_i)_V = give d\overline{d}_i = (d\overline{d}_i)_V + (d\overline{d}_i)_$

For any subspace
$$V_{3}$$

 $S(V)^{2}+S(V^{2})^{2} = \frac{1}{n-1} [\||d_{1}||^{2} + \dots + \||d_{n}\|^{2}]$
 $= (total variance) = 6^{2} + \dots + 6^{2}$
(p.3) $= (total variance) = 6^{2} + \dots + 6^{2}$

NB:
$$s(V^{+})^{2} = \prod_{n=1}^{1} (\||d|)va\|^{2} + \dots + \||d|nva\|^{2})$$

is not x the sum of the squares of the (orthogonal)
distances of the di to V.
Def: The d-space of best fit is the serve of
arthogonal least squares is the dedimensional
subspace V minimizing $s(V^{+})^{2}$. The error $z = s(V^{+})^{2}$.
NB: Minimizing $s(V^{+})^{2}$ means maximizing $s(Y)^{2}$
since $s(V)^{2} + s(V^{+})^{2} = total variance.$
Thus: Let A be a centered data matrix with SVD
 $\int_{A^{-1}} A = a_{11}v_{1}^{-1} + \dots + a_{1}e_{1}v_{1}^{-1}$.
The d-space of best fit to its columns is
 $V = Span Su_{1}..., u_{d}^{2}$.
The variance clong V is $s(V) = a^{2} + \dots + a^{2} = s(N)^{2} + s(V^{+})^{2}$
so you "split" the total variance $a_{1}^{+} + \dots + a^{2} = s(N)^{2} + s(V^{+})^{2}$
into the large part $s(V) = a^{2} + \dots + a^{2}$ and the small part
 $s(V^{+}) = a_{11}^{+} + \dots + a^{2}$.

Eq: The line of best fit is the first principal component
$$V = \text{Span Suiz.}$$
 The error $2 = \sigma_2^2 + \cdots + \sigma_r^2$.

NB: This is all applied to the recentered data points. Your original data points dy..., dn = columns of A fit the tourstated subspace $V + \begin{pmatrix} M_i \\ Jim \end{pmatrix}$ (add back the means). See the Netflix problem on HW15.