Inventibility Revisited Recal: A has fall column rank if it has a proof in every columns (r=n) A has fall row rank if it has a proof in every now (r=m) IF A has full column rank and full row rank then n=r=m >> A is square and has a pivots: invertible. Thm: For an num matrix A, TFAE: (1) A is invertible (2) A has full column rank (3) A has full row reank (4) $RREF(A) = I_{n}$ (5) There is a matrix B with AB = In (6) There is a matrix B with BA = In \$(7) Ax=b has exactly one solution for every b (8) AT is invertible Gnamely, x=A-b (s row rank = col rank)

Eq: IF A is invertible then its columns
span IR" (full row rank)
$$\} \Rightarrow basis for IR"
are LI (full col ronk) $\} \Rightarrow basis for IR"
conversely, any basis for R" are the columns
of an invertible matrix
spons \Rightarrow full row rank
 $b LI \Rightarrow$ full col rank
Basis of R" = cols of an invertible
nxn matrix
So IR" has many bases! (not just ser-ser)
NB: for an nxn matrix,
full col rank \Rightarrow invertible \Rightarrow full raw rank
In terms of columns, n vectors in IR"
Spans IR" \Rightarrow linearly independent
this is a special case of the basis theorem.
Basis Theorem: Let V be a subspace of din d
(I) IF d vectors in V are LI then they're a basis
(2) IF d vectors in V are LI then they're a basis$$$

So it you have the correct number of vectors,
you only need to check one of spans/LI.
Eg: • Two noncollinear vectors in a plane
form a basis.
• Two vectors that span - plane firm a bass.
Geometry of Dot Products
Recall:
$$v = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = v \cdot w = xy_1 + \dots + x_n y_n = v T w$$

Dot products measure length & angles
= geometric questions about length & angles
become algebraic questions about length & angles
become algebraic questions about length & angles
work = x_1^2 + x_2^2 = 0
Dot: The length of v is
] |v|| = Jv.v ie |v||^2 = v.v
This makes sense by the
Pythagorean theorem: $v = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

Sanith Check:
$$CelR \ velR^n$$

 $\|cv\| = \|c\binom{x_i}{x_n}\| = \|\binom{cx_i}{cx_n}\| = \int (cx_i)^{\frac{1}{2}+\dots+1} (cx_n)^{\frac{2}{2}}$
 $= |c| \cdot \int x_i^2 + \dots + x_n^2 = |c| \cdot \|v\|| \sqrt{2}$
Eq: $2v$ is twice as long as v .
So is $-2v$.
Def: The distance from v to v is $\|v-v\| = \|v-v\|$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h of v-v| = 1$
 $\int v - v = |erg|h$

v=0, the unit vector in the direction of v J£ is the vector $u = \frac{1}{\|v\|} \cdot v = \frac{v}{\|v\|} \quad (satur \times vector)$ NB: $\|u\| = \left| \frac{1}{\|v\|} \right| - \|v\| = \frac{\|v\|}{\|v\|} = 1$ Eq: $V = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ $||v|| = \sqrt{3^2 + 4^2} = 5$ $u = \frac{1}{\|y\|} = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 4/5 \\ 3/5 \end{pmatrix}$ NB: all unit rectors in IR² are on the unit cinele. What about vis for v=w? Law of Cosines: alo c= 2+6 -2ab 6000 Vector Version:

 $||v-w||^2 = ||v||^2 + ||v||^2 - 2||v||||v|| \cos \theta$

(a=1111 b=11.01 c=11.01)

τν-ω ν ο ω

Algebra:

$$\begin{aligned} \begin{bmatrix} \mathsf{LHS} : & ||v-\omega||^2 := (v-\omega) \cdot (v-\omega) \\ & = v \cdot v + \omega \cdot \omega - \lambda v \cdot \omega \\ &= ||v||^2 + ||\omega||^2 - \lambda v \cdot \omega \\ & = ||v||^2 + ||\omega||^2 - \lambda v \cdot \omega \end{aligned}$$

cancel

I

Def: The angle from v to w (v,uto) is

$$\Theta := \cos^{-1} \left(\frac{v \cdot w}{||v|| ||v||} \right)$$

NB: $|co_{2} \Theta| = |\frac{v \cdot w}{||v|| ||v||} \in [0, 1]$
 $\implies |v \cdot w| \leq ||v|| \cdot ||w||$
Schwartz Inequality: $|v \cdot w| \leq ||v|| \cdot ||w||$ ✓
Def: Vectors v and w are orthogonal or
perpendicular, written v Lix, it $v \cdot w = 0$

)

This says that either:
• v=0 or w=0 (or both), or fro
• Cos(0)=0
$$\iff$$
 $0=\pm90^{\circ}$
NB: The zero vector is orthogonal to every vectors
0.v=0 for all v
Orthogonality
We are now aiming to sind the "best" approximate
solution of $Ax=b$ when no actual solution exists.
Eq: find the best-fit ellipse through these points
from the 12 lecture...
Q: How close can Ax get to b?
Col(A) = $\{Ax: x \in \mathbb{R}^n\}$
so this means: what is the closest vector b in
Col(A) to b?
A: b-b is perpendicular to Col(A)
So we want to understand what vectors are
perpendicular to a subspace.

Eq: Find all vectors orthogonal to v=(i)We need to solve V·X=0 $rac{1}{2}$ $\gamma^T \chi = 0$ This is just Nul(VT): $\begin{bmatrix} 1 & 1 \end{bmatrix} \longrightarrow X_1 + X_2 + X_3 = 0$ $\begin{array}{rcl}
\mathsf{PF} & X_1 = -X_2 - X_3 \\
\mathsf{F} & X_2 = & X_2 \\
\mathsf{X} & X_3 = & X_3
\end{array}$ $\frac{PVP}{\swarrow} \chi = \chi_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \chi_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ \rightarrow Span $\left\{ \begin{pmatrix} -i \\ 5 \end{pmatrix}, \begin{pmatrix} -i \\ i \end{pmatrix} \right\}$ plane [Lemo] Check: $\begin{pmatrix} -i \\ 0 \\ i \end{pmatrix} \cdot \begin{pmatrix} i \\ i \end{pmatrix} = 0$ $\begin{pmatrix} -i \\ 0 \\ i \end{pmatrix} \cdot \begin{pmatrix} i \\ i \end{pmatrix} = 0$ Eq: Find all vectors orthogonal to $v_i = \binom{i}{i} & v_s = \binom{i}{o}$ We need to solve $\begin{cases} v_i^T \cdot x = 0 \\ v_s^T \cdot x = 0 \end{cases}$ $\begin{array}{c} x_i + x_s + x_s = 0 \\ x_i + x_s \end{array}$ Equivalently, $\begin{pmatrix} -v_1^T - \\ -v_2^T - \end{pmatrix} \cdot x = \begin{pmatrix} v_1^T x \\ v_2^T x \end{pmatrix} = 0$

So we want
$$\operatorname{Nul} \begin{pmatrix} -v_{1}^{T} - \\ -v_{2}^{T} - \end{pmatrix} = \operatorname{Nul} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\begin{cases} 1 & 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$\end{cases}$$

$$\begin{cases} 1 & 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\end{cases}$$

NB: If
$$x \perp v_i$$
 and $x \perp v_z$ then
 $x \cdot (av_i + bv_z) = a \times v_i + b \times v_z = a \cdot 0 + b \cdot 0 = 0$
So x is orthogonal to every vector in
Span $\{v_i, v_z\}$

[demo again]

More generally, $\begin{cases} v \text{ is orthogonal } \\ v \text{ is orthogonal } \\ v \text{ every vector} \\ m \text{ Span } v \text{ span } \\ \end{array} = Nul \begin{pmatrix} -v \text{ i} \\ \vdots \\ -v \text{ i} \end{pmatrix}$