Orthogonal Projections

Recall: to find the best approximate solution of Ax=b, want to find the closest vector b to b in Col(A) = SAX: XER? Want: b-b is orthogonal to V: b-beV1

Def: Let V be a subspace of Rⁿ and beRⁿ. The orthogonal projection of 6 onto Vis the closest vector by in V to b. It is defined by b-breV+ The orthogonal decomposition of b relative to V is b = bv + bvi $b_{V1} = b - b_{V} \in V^{\perp}$. Note that Here $b - b_{VL} = b_V \in V = (V^L)^L$ So that but is projection onto V¹.

In other words, the orthogonal decomposition is b = (closest vector bv) + (closest vector bv)b= (projection of b) + (projection of b) onto V + (onto VL)

[demos]

How to compute br? Step O: Write V as a column space or a null space. V = G(A): then $V^{\perp} = Nul(A^{T})$, so $b-b_{v}\in N_{u}(A^{T}) \implies A^{T}(b-b_{v})=0$ It by E Col(A) then by = Ax for x E R": $A^{T}(b-A^{2}) = 0 \implies A^{T}A^{2} = A^{T}b$ Solve this equation for $x \rightarrow bv = A x$

Eq: Let
$$b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and $V = Col \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
Find $bv =$ the orthogonal projection of b to V .
We set up the equations $A^{T}A\hat{x} = A^{T}b$:
 $A^{T}A = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$.
 $A^{T}b = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
In augmented matrix form, $A^{T}A\hat{x} = A^{T}b$ is:
 $\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} \cdots \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
So $\hat{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.
Check: $bv_{1} = b - bv_{1} = \begin{pmatrix} 1 \\ -V_{2} \end{pmatrix}$.
 $\begin{pmatrix} 1 \\ -V_{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -V_{2} \end{pmatrix}$.
 $\begin{pmatrix} 1 \\ -V_{2} \end{pmatrix} \begin{pmatrix} 0 \\ -V_{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -V_{2} \end{pmatrix}$.
Distance from V : $\| b - bv_{1} \| = \| bv_{1} \| = \| \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} = \frac{1}{2}$.
Orthogonal Decomposition: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -V_{2} \\ 0 \end{pmatrix}$.

Proceedure: To compute the orthogonal projection
by of b onto V=Col(A):
(1) Solve the equation ATA\$=ATB
(2) Then by=A\$ for any solution \$\$.
Then by=b-by, and the orthogonal
decomposition of b relative to V is
b=by+by+.
The distance from b to V is Iby+11.
Eq: Let b= (1) and V=Col(
$$\frac{1}{2} - \frac{1}{4} - \frac{1}{4}$$
).
Find the orthogonal decomposition of b relative
to V.
(1) ATA = $\begin{pmatrix} -1 & 2 & 1 \\ -1 & 4 & -1 \end{pmatrix}\begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 3 & 6 \\ 6 & 6 & 18 \end{pmatrix}$
 $ATb = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 4 & -1 \end{pmatrix}\begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 3 & 6 \\ 6 & 6 & 18 \end{pmatrix}$
 $ATb = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 4 & -1 \end{pmatrix}\begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}$

PVF
$$\hat{x} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

(2) by = A \hat{x} for any solution. Let's use
the particular solution:
 $b_{V} = \begin{pmatrix} 2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
NB: $b_{V} = b$: what does that mean?
 b was already in V! More on this late:
Def: The normal equation of Ax=b is
AFAX = AFb
Fact: AFA \hat{x} = AFb is always consistent!
(Otherwise the Procedure wouldn't work.)
(Jhy? I claim (G1(AF) = (G1(AFA)).
From before: Nul(A) = Nul(AFA)!
Take (-)¹: Nul(A)¹ = Nul(AFA)!
Nul(A)¹ = Row(A) = (G1(AF))
Nul(ATA)¹ = Row(AFA) = (G1(AFA)^T)
Nul(ATA)¹ = Row(AFA) = (G1(AFA)^T)
= (G1(AFA) /

Since AF be Col(AF) = Col(ATA), the equation

$$A^{T}A\hat{x} = A^{T}b$$
 is consistent:
NB: IF \hat{x} and \hat{y} both solve
 $A^{T}A\hat{x} = A^{T}x = A^{T}A\hat{y}$
then $O = A^{T}A\hat{x} - A^{T}A\hat{y} = A^{T}A(\hat{x}\cdot\hat{y})$
 $\implies \hat{x} - \hat{y} \in Nul(A^{T}A) \stackrel{c}{=} Nul(A) \implies A(\hat{x}\cdot\hat{y}) = O$
 $\implies \hat{y} = A\hat{y}$. So any soln of $A^{T}\hat{x} = A^{T}b$ corks.
Now we know how to project onto a column space.
What if $V = Nul(A)$?
Then $V^{\perp} = Nul(A)^{\perp} = Rax(A) = Col(A^{T})$.
So first compute by $x = projection onto a col space,$
then $by = b - by \perp$.
Procedure: To compute the orthogonal projection
by of b onto $V = Nul(A)$:
(1) Compute by $x = projection onto V^{\perp} = Col(A^{T})$
using the normal equation:
 $AA^{T}\hat{x} = Ab \longrightarrow bx = A^{T}\hat{x}$
(2) $by = b - by \perp$

Es: Project b=
$$\binom{1}{8}$$
 onto V=Nul $\binom{1}{1}\binom{1}{1}\binom{1}{2}$.
We need to solve $AA^{T}\hat{x} = Ab$
 $AA^{T} = \binom{1}{1}\binom{1}{1}\binom{1}{2} = \binom{3}{2}\binom{2}{2}$
 $Ab = \binom{1}{1}\binom{1}{1}\binom{1}{2} = \binom{1}{1}$
 $Ab = \binom{1}{1}\binom{1}{1}\binom{1}{2} = \binom{1}{1}$
 $Ab = \binom{1}{1}\binom{1}{1}\binom{1}{2} = \binom{1}{1}\binom{1}{2}$
 $Ab = \binom{1}{1}\binom{1}{2}\binom{1}{2} = \binom{1}{2}\binom{1}{2}$
 $Ab = \binom{1}{1}\binom{1}{2}\binom{1}{2} = \binom{1}{2}\binom{1}{2}$
 $Ab = \binom{1}{1}\binom{1}{2}\binom{1}{2} = \binom{1}{2}\binom{1}{2}$
 $Ab = \binom{1}{2}\binom{1}{2}\binom{1}{2} = \binom{1}{2}\binom{1}{2}$
 $Ab = \binom{1}{2}\binom{1}{2}\binom{1}{2} = \binom{1}{2}\binom{1}{2}$
 $Ab = \binom{1}{2}\binom{1}{2}\binom{1}{2}\binom{1}{2}\binom{1}{2}\binom{1}{2}$
Projector onto a Line:
Suppose $V = Span \{V\}$.
Then $V = (a)(A)$ where $A = V$ (one column).
 $A^{T}A = v^{T}v = v \cdot v$ is a scalar
 $A^{T}b = v^{T}b = v \cdot b$
So the normal equation becomes
 $A^{T}A\hat{x} = A^{T}b \longrightarrow (v \cdot v)\hat{x} = v \cdot b$

Then
$$\dot{x} = \frac{v \cdot b}{v \cdot v}$$
 as $by = A\dot{x} = \frac{v \cdot b}{v \cdot v} v$
Here's the formula:

Projection onto the Line Span
$$\{v\}$$

 $b_v = \frac{v \cdot b}{v \cdot v} v$

Eq: Preject b=(i) onto V=Span
$$S(1)S$$
.
by = $\frac{(1) \cdot (1)}{(1) \cdot (1)} (1) = \frac{1}{2} (1)$
[demo]

Properties of Projections: recall
$$b=b_V+b_{VL}$$

(1) $b_V=b \iff b_{VL}=0$
 $\Longrightarrow b \in V$
Think: the closest vector to b in V is b
 $\Longrightarrow b \notin already in V.$
(2) $b_V=0 \iff b=b_{VL}$
 $\iff b \in V^{\perp}$
(3) $(b_V)_V=b_V$ $(b_V \in V; use (1))$

Projection Matrices Suppose that A has full column rank. In this case, the nxn matrix ATA is invertible: 1/15 is HW7#13. Fact: If V=Col(A) and A has full column rank then for any bER? $b_{v} = A(A^{T}A)^{T}A^{T}b$ This is because ATAX=ATb has the unique solution $\hat{x} = (ATA)^{-1}A^{T}b$, so $b_v = A\hat{x} = A(A^TA)\hat{x}^Tb$ $E_q: V = C_1(A) \quad A = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ $A^{T}A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ $(A^{T}A)^{-1} = \frac{1}{6-4} \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 3/2 \end{pmatrix}$ $A(A^{T}A)^{-1}A^{T} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 3/2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$

=
$$\begin{pmatrix} 0 & \frac{1}{2} \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

So if $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ then
 $b_{r} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
Observation: $P_{r} = A(A^{r}A)^{r}A^{r}$ is an maximum metrix
that computes orthogonal projections onto
 $V = Col(A)^{r}$ $P_{r}b = b_{r}$ for all $b \in \mathbb{R}^{m}$.
Def: Let V be a subspace of \mathbb{R}^{m} . The
projection matrix for V is the maximum matrix
 P_{r} such that $P_{r}b = b_{r}$ for all $b \in \mathbb{R}^{m}$.
NB: The natrix P_{r} is defined by the equality
for all vectors b. This uniquely characterizes
 $P_{r}b = b_{r}$
for all vectors b. This uniquely characterizes
 P_{r} by the Fact below. Use the above
equation to answer questions about P_{r} !

Fact: IF A&B are non matrices and Ax=Bx for all X, then A=B. Indeed, Ae="it col of A. What if V=Col(A) but A does not have full column rank?

$$P_{V} = B(B^{T}B)^{-1}B^{T} = \frac{1}{6}\begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & -1 \end{pmatrix} = \frac{1}{6}\begin{pmatrix} 3 & 0 & 3 \\ 0 & 6 & 0 \\ 3 & 0 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 \\ 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 0 \\$$

Prejection Matrix onto a Linc
IF V= Span Sv3 then
$$P_{v} = \frac{vv^{T}}{v \cdot v}$$

$$E_{g}: V = Span \left\{ \binom{1}{1} \right\}$$

$$P_{r} = \frac{1}{\binom{1}{1}\binom{1}{1}} \binom{1}{1}\binom{1}{1} \binom{1}{1} = \frac{1}{2}\binom{1}{1}\binom{1}{1} = \binom{1}{2}\binom{1}{1}\binom{1}{1} = \binom{1}{2}\binom{1}{1}\binom{1}{2}$$

$$S_{0} \text{ if } b = \binom{1}{2} \text{ then } b_{r} = P_{r}b = \binom{1}{2}\binom{1}{1} \text{ (cf } p.8)$$

Properties of Projection Matrices:
Let V be a subspace of
$$\mathbb{R}^m$$
 and let \mathbb{P}_r
be its projection matrix.
(1) $GI(\mathbb{P}_r) = V$ (3) $\mathbb{P}_r^2 = \mathbb{P}_r$
(2) $Nul(\mathbb{P}_r) = V^{\perp}$ (4) $\mathbb{P}_r + \mathbb{P}_{r^{\perp}} = \mathbb{I}_m$
(5) $\mathbb{P}_r = \mathbb{P}_r^{\top}$

lecall: A (square) matrix S is symmetric if S=ST.

orthogonal decomposition.

$$= b = Imb$$
Since $(P_v + P_{v\perp})b = Imb$ for all vectors b,
 $P_v + P_{r\perp} = Im$.

(5) Choose a basis for
$$V \rightarrow P_{v} = B(BTB)^{-1}B^{T}$$

 $P_{v}^{T} = (B(BTB)^{-1}B^{T})^{T} = B^{TT}((BTB)^{-1})^{T}B^{T}$
 $= B((BTB)^{T})^{-1}B^{T} = B(BTB)^{-1}B^{T} = P_{v}$

For any invertible matrix
$$A$$
,
 $(A^{-1})^T = (A^T)^{-1}$ because
 $(A^{-1})^T A^T = (AA^{-1})^T = I_n^T = I_n$

Es: Find
$$P_v$$
 if $V=Nul(A)$.
In this case, $V^{\perp}=Col(A^{\top})$, so we know how
to compute $P_{v\perp}$. Then
 $P_v=I_n-P_{v\perp}$.

 $E_{A}: V = N_{M}(1 \ 2 \ 1) \ \sim V^{\perp} = C_{P}(\frac{1}{2})$ This is a line: $P_{v=}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}$ This was much easier than finding a basir for V using PVF, then using Pr=A(ATA)-'AT. -> Be intelligent about what you actually have to compute!