Properties of Projections:
(1)
$$b_{V} = b \iff b_{V1} = 0 \iff b \in V$$

(2) $b_{v} = 0 \iff b = b_{V1} \iff b \in V^{\perp}$
(3) $(b_{v})_{v} = b_{v}$

Eq: last time: if
$$b = (1)$$
 $V = G(2, 1, 4)$
then we computed $b_{V} = (1)_{S}$ so we should
have beV. Let's check:
 $(2, 1, 4) (1) \xrightarrow{VVF} (\frac{x_{1}}{x_{2}}) = (-\frac{2y_{2}}{5}) + x_{3}(-\frac{1}{5})$
Taking $x_{3}=0$ gives a solution of the vector eqn:
 $(1)_{S} = \frac{2}{3}(\frac{1}{5}) - \frac{1}{3}(-\frac{1}{5})$
So b is indeed in $V = G(2, -\frac{1}{5}, -\frac{1}{5})$.

Projection Matrices

Recall: IF V=Col(A) then you compute by
us follows:
(1) Solve the normal equation ATAX=ATD
(2) by=Ax for any solution
$$\hat{x}$$
.
Lemma: A has full column rank if & only if
ATA is invertible.
Proof: Note ATA is square.
A has FCR
 \implies Nul(A)=for (FCR criteric)
 \implies Nul(A)=for (FCR criteric)
 \implies Nul(AA)=for (FCR criteric)
 \implies ALU(ATA)=for (FCR criteric)
 \implies ATA is invertible (invertibility criteric)
This case, ATAX=ATB has the unique solution
 $\hat{x}=$ (ATA)TATB, so $b_{x}=A\hat{x}=A(ATA)TATB$.

Eq:
$$V = Col(A)$$
 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $A^{T}A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$
 $(A^{T}A)^{-1} = \frac{1}{6-4} \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 3/2 \end{pmatrix}$
 $A (A^{T}A)^{-1}A^{T} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 3/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $= \begin{pmatrix} 0 & V_{2} \\ 0 & V_{2} \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & V2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
So if $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ then
 $b_{Y} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & V2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1/2 \\ 0 \end{pmatrix}$
Observation: $P_{Y} = A(A^{T}A)^{T}A^{T}$ is an mean matrix
that computes orthogonal projections onto
 $V = Col(A)^{T}$, $P_{y}b = b_{Y}$ for all $b \in \mathbb{R}^{m}$.

Fact: If A&B are non matrices and Ax=Bx for all X, then A=B.

Indeed, Ae= it col of A, so actually a matrix is determined by its action on the unit coordinate vectors.

What if V=Col(A) but A does not have full column rank? How to compute Pr?

$$S = V = (G|(A) \quad A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$
This A does not have full column rank:

$$A \xrightarrow{ref} \begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 \end{pmatrix} \quad pints$$
This says that $S \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \}$ is a basis
for V. This means:
(1) $V = Span S \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \} = Col \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$
(2) $S \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \}$ is LI

$$\sum \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} has full column rank.$$
So replace A by $B = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$:

$$B^{T}B = \begin{pmatrix} 1 & 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 3 \end{pmatrix}$$

 $(B^{T}B)^{-1} = \begin{pmatrix} 1/6 & 0 \\ 0 & 1/3 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

$$P_{V} = B(B^{T}B)^{-1}B^{T} = \frac{1}{6}\begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ -1 & 1 & -1 \end{pmatrix} = \frac{1}{6}\begin{pmatrix} 3 & 0 & 3 \\ 0 & 6 & 0 \\ 3 & 0 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 3\end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 3 \end{pmatrix}$$
$$S = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 3 \end{pmatrix}$$
$$S = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\$$

Procedure for Computing R:
(1) Find a basis
$$\{v_{10}, \dots, v_n\}$$
 of V
(2) $B = (v'_1, \dots, v'_n)$ for example, if
(3) $P_V = B(B^T B)^{-1} B^T$ use the pivot columns
Eq: Suppose V = Span $\{v_i\}$ is a line.
 $B = v$ (matrix with one column)
 $B^T B = v \cdot v$ (a scalar)
 $B(B^T B)^{-1} B^T = v(v \cdot v)^{-1} v^{-1} = v v^{-1}$
 $Prejection Matrix onto a Line
IF V = Span $\{v_i\}$ then $P_V = v \cdot v$$

(3) For any vector b,

$$P_v^2 b = P_v(P_v b) = P_v(b_v) = (b_v)_v$$

This equals by because bieV already
 $= b_v = P_v b$
Since $P_v^2 b = P_v b$ for all vectors b, $P_v^2 = P_v$.
(4) For any vector b,
 $(P_v + P_{+1})b = P_v b + P_{2}b = b_v + b_{2}a$
This equals b because $b = b_v + b_{2}a$ is the
orthogonal decomposition.
 $= b = Imb$
Since $(P_v + P_{2})b = T_m b$ for all vectors b,
 $P_v + P_{v1} = T_m$.
(5) Choose a basis for V~> $P_v = B(B^T B)^- B^T$
 $P_v^T = (B(B^T B)^- B^T)^- B^T = B(B^T B)^- B^T = P_v$

Lost time: if
$$V = Nul(A)$$
, we computed by by
first computing the projection onto $V^{\perp} = Gl(A^{\dagger})$,
then using $b_r = b - b_r L$.

We can do the same for projection matrices, using (5):

Procedure: To compute R' for V=Mul(A):
(1) Compute R'L for V= Col(AT)
(2) P' = Im - P'L
Compute R' for V= Nul(1 2 1).
In this case, V^L = Col(¹/₂) is a line:
P'L =
$$\frac{1}{(\frac{1}{2})\binom{1}{2}\binom{1}{2}\binom{1}{2} + \frac{2}{2}\binom{1}{2}$$

 $P'_{r} = \binom{1}{(\frac{1}{2})\binom{1}{2}\binom{1}{2}\binom{1}{2} + \frac{2}{2}} = \frac{1}{6}\binom{5-2-1}{(-2-2-5)}$
This was much easier than finding a best for
V using PVF, then using P'= B(B'B)⁻¹BT:
 $X_1 = -2X_2 - X_3$
 $X_2 = X_3$
 $B = \binom{-2-1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{2}{2} - \frac{1}{2} - \frac{2}{2} - \frac{1}{2} - \frac{2}{2} - \frac{1}{2} - \frac{1}{2}$

$$= \frac{1}{6} \begin{pmatrix} -2 & -1 \\ 2 & -2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
$$= \frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}$$

→ Be intelligent about what you actually have to compute! Ask yourself: "is it easier to compute Pv or Pv1?"