Determinants What we've done: · Solve Ax=b (bauss-Jordan, LU, PVF, ...) · Approximately solve Ax=b (orthogenality, projections, QR, ...) What's next: · Solve Ax= Xx This is the eigenvalue problem used in difference equations (rabbit population) & ODEs. It deals

exclusively with square matrices.

The determinant of a square matrix is a number that satisfies many magical properties. I'll define it by telling you how to compute it using row operations. -> Next time: other ways to compute it.

Def: The determinant of a square matrix
$$A$$
 is
a number det(A) or [AI sectisfying:
[1] If $A \xrightarrow{R_1 + = cR_1} B$ then $det(A) = det(B)$.
(2) If $A \xrightarrow{R_1 + = cR_2} B$ then $det(A) = \frac{1}{c}det(B)$.
(3) If $A \xrightarrow{R_1 - sR_2} B$ then $det(A) = \frac{1}{c}det(B)$.
(4) $det(In) = 1$.

Consequence: if A has a zero row then det(A) = 0Eq: $det\left(\begin{array}{c}1&2&3\\4&5&6\\0&0&0\end{array}\right)\frac{R_{3}x=-1}{(2)} - det\left(\begin{array}{c}1&2&3\\4&5&6\\0&0&0\end{array}\right)$ =) $det\left(\begin{array}{c}1&2&3\\4&5&6\\0&0&0\end{array}\right) = 0$

Consequence: if A is (upper/lower) triangularthen det(A) = product of diagonal entries

Eq:
$$det \begin{pmatrix} a & \star & \star \\ o & b & \star \\ 0 & o & c \end{pmatrix} \stackrel{R, \kappa = \frac{1}{a}}{R_{\kappa} \star = \frac{1}{c}} abc det \begin{pmatrix} 1 & \star & \star \\ o & 1 & \star \\ 0 & o & 1 \end{pmatrix}$$

$$\xrightarrow{row (1)}_{reparements} abc det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \star \\ 0 & 0 & 1 \end{pmatrix} \stackrel{(4)}{=} abc$$

What if
$$b=0$$
 though? (or a? or c?)
 $det\begin{pmatrix}a & x \\ 0 & 0 \\ 0 & c\end{pmatrix} \xrightarrow{rov}(1)$
 $replacements det\begin{pmatrix}a & x & 0 \\ 0 & 0 & c\end{pmatrix}$
 $=0 = a \cdot 0 \cdot c$

Es: det
$$\begin{pmatrix} a & x & x \\ 0 & b & x \\ 0 & -c & c \end{pmatrix}^{R_{x=a}} \frac{R_{x=b}}{R_{x=b}} abc det \begin{pmatrix} 1 & x & x \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{row}{reparently} abc det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{(4)}{=} abc$$
What if $b=0$ though? (or a? or c?)
 $det \begin{pmatrix} a & x & x \\ 0 & 0 & x \\ 0 & -c \end{pmatrix} \frac{row}{reparently} det \begin{pmatrix} a & x & 0 \\ 0 & 0 & c \end{pmatrix}$
 $= 0 = a \cdot 0 \cdot c$

A REF matrix is triangular, so you can compute
 $det(A)$ by Gaussian elimination!
Es: $det \begin{pmatrix} 0 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix} \stackrel{R_{x} \to R_{x}}{(s)} - det \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix} \stackrel{R_{x} \to R_{x}}{(s)} - det \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$
 $= -2$

NB: You get the same number for det(A) nomatter which row operations you do!

$$E_{g}: det \begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \xrightarrow{R_{1} \leftarrow R_{3}} - det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix} \\ \xrightarrow{R_{2} - 2R_{1}} - det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{R_{3} - 2R_{2}} - det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix} \\ \xrightarrow{R_{3} - 2R_{2}} - det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{R_{3} - 2R_{2}} - det \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \\ = -2 \sqrt{2}$$

Gaussian elimination is the fastest general algorithm for computing the determinant of a matrix (with known entries).

Procedure: To compute dot(A), run Gaussian
elimination: A perations U. Then
$$det(A) = (-1)^{\# row swaps} = \frac{1}{H(row sculing)} H(diagonal u)$$

 $NB: You don't need to do row scaling operations torun Gaussian elimination, so this term usuallydoes not appear.$

NB: Row operations multiply det by a nonzero scalar: A row B = let(B) = (nonzero) - det(A). Eg: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ • If $a \neq 0$: $det(A) \xrightarrow{R_2 = \frac{c}{a}R_1} det(\begin{pmatrix} a & b \\ o & d - \frac{c}{a}b \end{pmatrix})$ $= a(d - \frac{c}{a}b) = ad - bc$

If
$$a=0$$
:
 $det(A) \xrightarrow{R_1 - R_2} - det(\begin{array}{c} c \\ o \\ b\end{array})$
 $= -bc = ad-bc$

$$det (a b) = ad-bc$$

Magical Properties of the Determinant: (1) Existence: There exists a number det(A) satisfying defining properties (1) - (4). (2) Invertibility: A is invertible add (A) = 0 (3) Multiplicativity: det (AB) = det (A) dut (B) and det(A)=0 = det (A^{-1}) = det(A) (4) Transposes: det (A⁻¹) = det(A) We'll only prove (2) in class. See ILA for the rest.

Existence
(1) says: You get the same number
for det(A) nomatter which row ops you do!
Invertibility
Prof: If U is a REF of A then
det(U) = product of diagonal entries
det(U) = 0
$$\iff$$
 all diagonal entries
are nonzero
 \iff A has a pirote
 \implies A is invertible
We know det(A) = (nonzero scalar) - det(U),
s. doo det(A) = 0 \iff det(U) = 0.

Eq: det
$$\binom{-1}{3} = (-1)(-3) - (1)(3) = 0$$

so $\binom{-1}{3} - \frac{1}{3}$ is singular (not invertible)

$$\begin{aligned} \text{Maltiplicativity} \\ \text{Eg: } \det\left[\begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}^{100}\right] \\ &= \det\left[\begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}^{10}\right] \\ &= \det\left(\begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}, \det\left[\begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}^{10}\right] \\ &= \dots = \left[\det\left(\begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}^{100} = (-2)^{100} \end{aligned}\right] \end{aligned}$$

More generally,

$$det(A^{n}) = det(A)^{n} \quad for all n \ge 0$$

$$(and n \ge 0 \text{ if } det(A) \pm 0)$$

$$E_{g}: Say A has a PA = LM decomposition.$$

$$det(L) = det(\stackrel{!}{\stackrel{!}{_{x}}} \stackrel{\circ}{_{x}} \stackrel{\circ}{_{x}}) = 1$$

$$You get P by doing now swaps on In, so
$$det(P) = (-i)^{\#row swaps}$$

$$Hence$$

$$(-i)^{\#row swaps} det(A) = det(PA)$$

$$= det(LM) = det(L)det(M)$$

$$= det(LM)$$$$

This recovers the formula on p.4 (we did no row scaling operations). ransposes

The transpose property says that det(A) sortisfies (1)-(3) for column operations too: they're just row operations on AT.

$$det \begin{pmatrix} 2 & 7 & 4 \\ 3 & 1 & 3 \\ 4 & 0 & 1 \end{pmatrix} \xrightarrow{C_1 - = 4C_3} det \begin{pmatrix} -44 & 7 & 4 \\ -9 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\| \text{transpose} \qquad \| \text{transpose} \\ det \begin{pmatrix} 2 & 3 & 4 \\ 7 & 1 & 0 \\ 4 & 3 & 1 \end{pmatrix} \xrightarrow{R_1 - = 4R_3} det \begin{pmatrix} -14 & -9 & 0 \\ 7 & 1 & 0 \\ 4 & 3 & 1 \end{pmatrix}$$

So we can compute det using column ops:

$$det \begin{pmatrix} 2 & 7 & 4 \\ 3 & 1 & 3 \\ 4 & 0 & 1 \end{pmatrix} \xrightarrow{C_1 - = 4C_3} det \begin{pmatrix} -14 & 7 & 4 \\ -9 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{C_1 + = 9C_2}{2} det \begin{pmatrix} 49 & 7 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= 49$$

Determinants and Volumes
Where do properties (1) -(4) are from?
Two vectors
$$V_{1}V_{2} \in \mathbb{R}^{2}$$
 determine
("span") a paralellogram
 $P = \{x, v_{1} + x_{2}v_{2}: x_{3}x_{3}\in [0,1]\}$
Fact: area(P) = $\left|\det\left(-v_{1}^{T}-\right)\right|$
Eq: $V_{1} = \binom{1}{1}$ $V_{2} = \binom{2}{3}$
 $area(P) = \left|\det\left(\frac{1}{2}-\frac{1}{3}\right)\right|$
 $= \left|(3)(1)-(2)(-1)\right| = 5$
Why? Let's check that area(P) satisfies the
four defining properties (1) - (4) of the
determinant.

cut 8

NB: arca(P) = base × height:

(1) Row replacement

$$v_{2} \rightarrow v_{2} + cv$$
,
 $area = base x ht : unchanged
(1) Row scaliny
 $v_{1} \rightarrow cv$,
 $v_{1} \rightarrow cv$,
 $v_{2} \rightarrow cv$,
 $v_{3} \rightarrow cv$,
 $v_{4} \rightarrow cv$,
 $v_{5} \rightarrow cv$,
 $v_$$

NB: When n=1, "volume" = "length": length (a) = lal a NB: When n=2, "volume" = "area". Question: When is volume(P)=0? When P is squashed flat: ie when V₆₋₅, V_n are v, v, p area=0 Inearly dependent (=> det (...)=0)

NB: In multivariable calc, you approximate shapes by try cubes, which turn into try pavellelepipeds after applying a function. This is why determinants appear in the change of variables tomula for integrals. dy ... dyn= det (dyi/2x;) dx,...dxn volume charges by det(²5/25)