



































































































































Geometry of the SVD Matrix Form

We have drawn pictures of a triple product
decomposition before

Dragonalization

A to a E CDC

for C 1 Day in
1 multiply by C G multiply by D 23 multiply by C

diffIII

C x E

A wee u

e 1
5

Cee v2
i Ju two






































































































































SVD A I 8 WENT for

U 1 I K 1 5 a 15
To evaluate Ax UE.VE
1 multiply by VT G multiply by E 23 multiply by U

But U and VT are orthogonal so thesejust rotate flip
A 1 rotateflip 2 stretch 13 rotateflip

VIII
qq

Crotate co 450

Ma
Allal

Even
unit circle
draw this

Vta ez to help
VTx T visualize

stretch E At
Aversa
Aversa

rotateCcw by
arctan 3 1 720

Efx175

É GT e I
µÉ5É






































































































































Notes caveats

Dragonalization start end in w we basis
SVD startwith u u end with a uh basis

Different bases

The Vt U steps preserve lengths angles
rotations flips us easier to visualize

The E step can flatten a sphere in the same IR
I

Axllet
it

ÉH

Q lintyplane

project onto the xy plane then stretch

The E step can change dimensions

I Allel

if i i I
2111 1

project onto the xy plane forget the z coordinate
then stretch






































































































































Geometryof the SUD Outer Product Form
Here is a geometric interpretation of the SVD that
will be useful for the PCA Let

A di din SVD A aunt t taunt

Avi qui Atar avi
Expand out Atuitivi

avi Ata III u

Gidi vie Ui Lovitt u di di da ai

Aichi dryish

NB duo ai orthogonal projection of d
onto Span ai since ni ni Huill'd

The columns of quirt are the
orthogonal projections

of the columns of A onto Sparta

Now lookat the sum

A aunt t tarcenunt






































































































































The ith column of this sum is

iffy die di edu t di un ur

Since Eau sur is an orthonormal basis of Col A
this is just the projection formula as applied to
di the projectionof di onto Col A is just di
since dieCol A lit is the ith columnof A

Eg A I I i I r 2

A aunt taunt
at 16.9 07

ifa 185 u 1 31

di E I columns

8É o ncolumns of quirt
projections of onto Span u

r
columns of Quant
projections of onto Span far

NB r

So SVD pulls apart the columns of A in us sur
components



Principal Component Analysis PCA

This is SVD 00 in stats language

it's often how SVD for linear algebra is used

in statistics data analysis
it makes precise statements about fitting data to
lines planes etc and how good the fit is

Idea If you have n samples of m values each
columns of an mxn data matrix

Let's introduce some terminology from statistics

One Value mel

Let's record everyone's scores on Midterm 3
samples X Xn

Mean average met x t Xa

Variance s x m
t xin

Standard Deviation s variance
This tells you how spaced out the samples are

168 of samples are within IS of the mean
if normallyWheredo these formulas come from distributed

Take a stats class



Eg Actual midterm 3 scores from Fall 20

M78

4
268 ofscores

Two Values m 2
are in this range

Let's record everyone's scores on problems 182
on Midterm 3

samples Y In A score on problem 1
Yi score an problem 2

Mean scores
Problem 1 Mi f x ta xn

Problem 2 Matty e ya

Recenter to compute variance
Xi Xi Mi Si yo Mz subtract means

Variance
Problem 1 silent ft txt

Problem 2 set g't yet

Total Variance 5 5 5



NB These are juststatistics for Problem 1 xi and
Problem 21g individually so far we've ignored the
fact they might be related This is what PCA does

Eg scares 1 1 181 14,1 1,141,141,13 M
recenter 5,1 1 187 31,1 1,185,111,1 17

161 8
y

12
subtract

8 y o
reentered

means07
4

É 4 8 12
y

means

8 5 0 3 7 11

Store in matrices

A 15 Y 18 1 81
A E E 11 8 1 E

NB Recentered means It ten O yet ty

The sum of the columns of the
recentered data matrix A as zero



Covariance Matrix

S AAT I
row 1 low1 Crawl Crowas

new2 row 1 row2 row2

tie txt att Inga
t Inga yet tyn

The diagonal entries are the variances

The trace is the total variance

The off diagonal entries are called covariances

Eg the 11,2 entry is

new 1 Crow 2 Igt Inga
If this is positive then I yi generally have
the same sign if you did above average on P1
then you likely did aboveaverage on P2 too
vice versa The values are correlated

If this is negative then I yI generally have

opposite signs if you did above average on P1
then you likely did below average on P2
vice versa The values are anti correlated

If this is almost zero then the values are
not correlated



In our case

S 3AAT E s
2 20

53 40

1,2 covariance 25 0 people who did above
average on PI likely did above average on P2

The SVD will tell us which directions have the
largest smallest variance

column means 0

Def let A be a recentered data matrix

A di din where di II it recentereddata pain

Let S AAT be the covariance matrix
Let meRm be a unit rector
The variance in the u direction is

sus uts u

NB S Luk ut AAT u LUTA ATU I CATATCATUS
Atu Atu tellAtul

since Ata III Ju III we get

slash atSu latin t than ut



NB die tan 0 for a recentered data matrixA p85
Hence O O u late tda u di a to din

so it makes sense to compute the variance of
these numbers din hi u with mean zero

slu latin t than ut

Eg If u 8 e then di u É d si so

slu sled t txt s

This is just the variance of the Xi's

In general sheiks

Picture Recall that if a is a unit rector then

Iv a u projection of n onto Sparta
ra v a hall Illusall length of the

projection of n onto Sparta

new
in Sparta

I E
du u

length btw
sponge IÉÉ



Eg With our data before take u in the picture

8
Dana di GI

t di a u

o 0 M slate sum of squares of
a distances from the

É o y 1
to Zero

Now we apply quadratic optimization to slakutsu

Let 7 a be the largest eigenvalue of S AAT
Let u be a unit a eigenvector

Quadratic Optimization

U maximizes slub utSu subject to Hull 1
with maximum value of

Therefore

u is the direction of greatest variance
g stu variance in the u direction

Our data points are stretched out most in the a direction



no Danfu
In our example

A Quiett aunt for I Iast92 56.9 05 3.07

ur 8 88 us 1 381 s s o a

di projection of onto Span us

So the first principal component is a and the
variance in that direction is 456.9

NB this is greater than the Problem 1 variance 20

the Problem 2 variance 40


