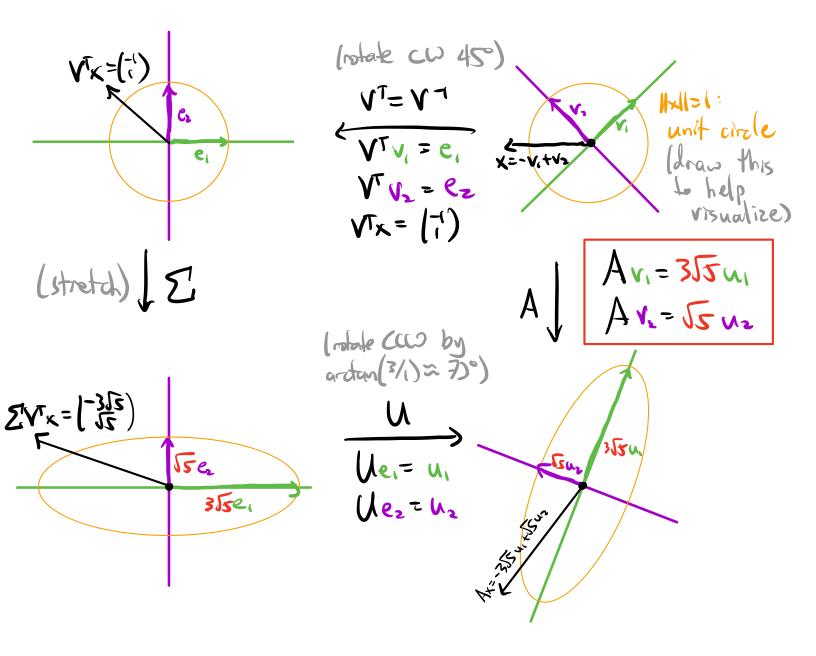
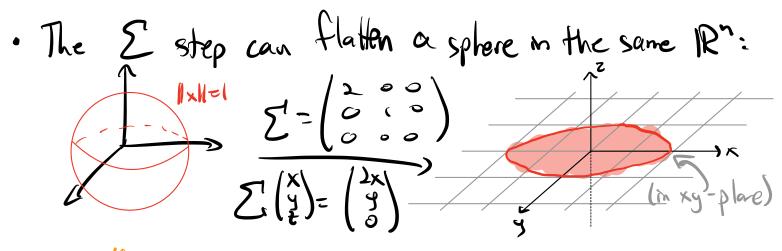


 $5VD: A = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} = U\Sigma V^T$ for $\mathcal{U} = \frac{1}{\sqrt{3}} \begin{pmatrix} u & u \\ 1 & \frac{1}{\sqrt{3}} \end{pmatrix} \quad \mathcal{V} = \frac{1}{\sqrt{3}} \begin{pmatrix} u & v \\ 1 & \frac{1}{\sqrt{3}} \end{pmatrix} \quad \mathcal{Z} = \begin{pmatrix} u & v \\ \frac{3\sqrt{3}}{\sqrt{3}} \end{pmatrix}$ To evaluate $Ax = U\Sigma V^T x^2$ (1) multiply by VT (2) multiply by Zi (3) multiply by U But U and VT are orthogonal, so these just rotate Alip. Ax= (1) rotate/ Plip (2) stretch (3) rotate/ Plip

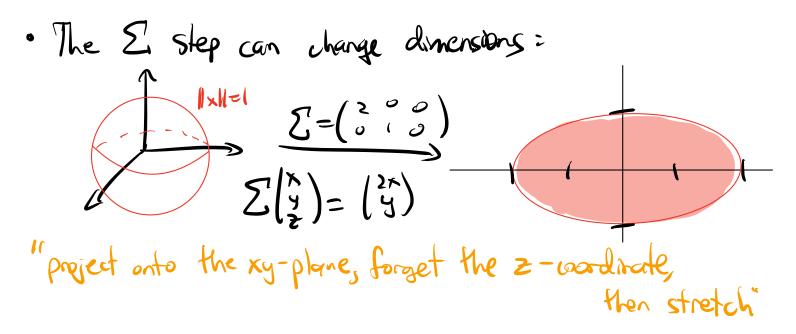


Notes / careats:

- Diagonalization: start & end in Swi, we? basis
 SVD: start with Svi, ue? & end with Eugue? basis
 Different bases!
- The VT& U steps preserve lengths & angles (rotations / Flips) ~> easier to visualize.



"project onto the xy-plane, then stretch"



Geometry of the SVD: Outer Product Form
Here is a geometric interpretation of the SVD that
will be useful for the PCA. Let

$$A = (d_{1} \cdots d_{n}) \quad SVD \quad A = \sigma_{i}u_{i}v_{i} + \cdots + \sigma_{i}u_{i}v_{n}T$$

$$\implies Av_{i} = \sigma_{i}u_{i} \quad A^{T}u_{i} = \sigma_{i}v_{i}$$
Expand out $A^{T}u_{i} = \sigma_{i}v_{i}$

$$G_{i}v_{i} = A^{T}u_{i} = \begin{pmatrix} -d_{i}^{T} \\ -d_{i}^{T} \end{pmatrix} u_{i} = \begin{pmatrix} d_{i}\cdotu_{i} \\ d_{n}\cdotu_{i} \end{pmatrix}$$

$$\implies G_{i}u_{i}v_{i}^{T} = u_{i}\left(\sigma_{i}v_{i}\right)^{T} = u_{i}\left(d_{i}\cdotu_{i} \cdots + d_{n}\cdotu_{i}\right)$$

$$= \left(b_{i}u_{i}u_{i}u_{i} \cdots + b_{n}u_{i}u_{i}\right)^{T}$$

$$NB_{i} (d_{i}\cdotu_{i})u_{i} = orthogonal projection of d
onto Span Suif (since u_{i}\cdotu_{i} = |u_{i}||^{2} = 1).$$
The columns of $\sigma_{i}u_{i}v_{i}^{T}$ are the
orthogonal projections
of the columns of A onto SpanSuif.

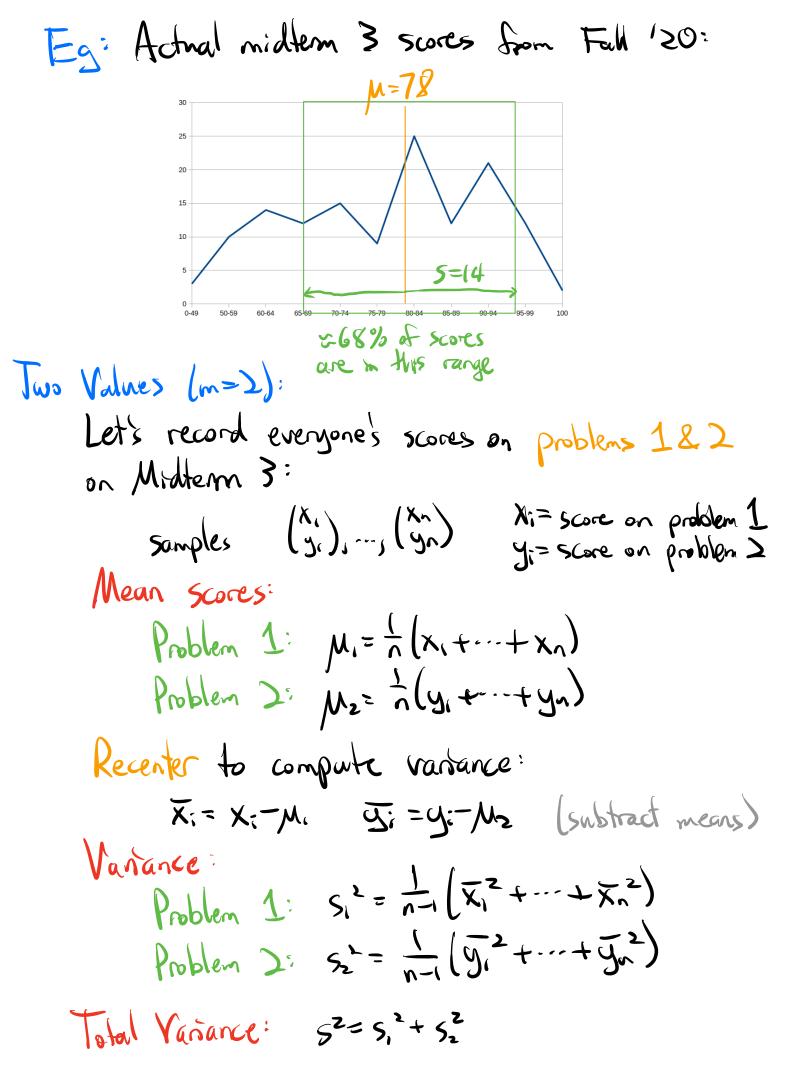
$$A = \sigma_{i} u_{i} v_{i}^{\dagger} + \dots + \sigma_{i} u_{i} v_{i}^{T}$$

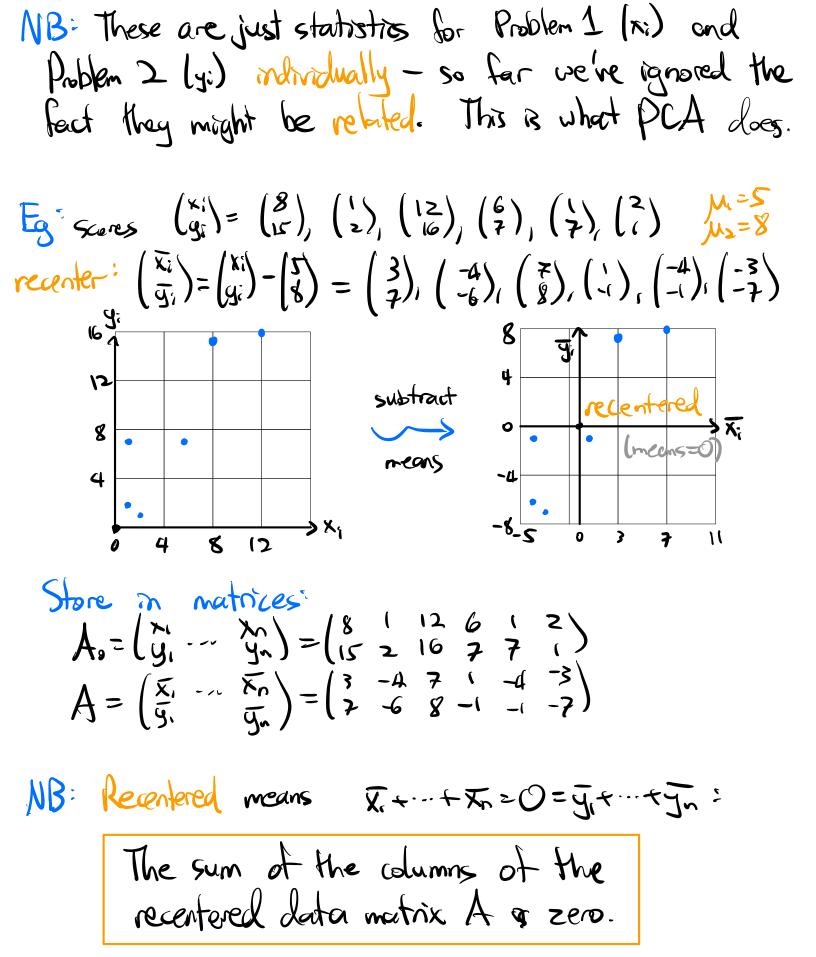
The it column at this sum is:

$$\frac{1}{0+A} = di = (d:u)u_1 + \dots + (d:u_n)u_n$$
Since $Su_{n-2}u_n^2$ is an action point basis of Col(A),
this is just the projection formula as applied to
 di : the projection of di onto Col(A) is just di
since $die(O((A))$ (it is the it column of A).
Eq. $A = (\frac{3}{2} - \frac{4}{6} \frac{7}{8} - \frac{1}{1} - \frac{4}{7}) r=2$
 $A = a_{U,V_1}^T + a_{U_2}V_3^T$
 $a_i \approx 16.9$ $a_2 \approx 3.92$
 $u_i \approx (\frac{0.561}{0.828})$ $u_i \approx (\frac{6.828}{-0.561})$
 $= di = (\frac{3}{7}), (-\frac{4}{7}), \dots (durne)$
 $= columns of a_{U,V_1}^T$
 $= projections of o onto $= Span Su_i^2$
 $NB^2 = = + 1$
So SVD "pulls apart" the column of A in $u_{U-1}u_i^-$$

components

Principal Component Analysis (PCA) This is "SVD+QO in stats language". -> it's often how SVD (or "Inear algebra") is used in statistics & data analysis. -> it makes precise statements about fitting data to lines/planes/etc and how good the fit is Idea: If you have a samples of m values each ~ columns of an mxn data matrix Let's introduce some terminology from statistics. One Value (m=1): Let's record everyone's scores on Middem 3: samples X, ..., Xn Mean (average): $M = \frac{1}{n} (X_1 + \dots + X_n)$ Variance: $s^2 = \prod_{n=1}^{2} \left[(x_1 - \mu)^2 + \dots + (x_n - \mu)^2 \right]$ Standard Derivation: S= Transace This fells you have "spaced out" the samples are: 268% of samples are within ±5 of the mean. There do these formulas come from? lif normally distributed Where do these formulas come from? lake a state class!





prartance Matrix:

$$S = \frac{1}{n-1} AAT = \frac{1}{n-1} \begin{pmatrix} (row 1) \cdot (row 1) & (row 1) \cdot (row 2) \\ (row 2) \cdot (row 2) \end{pmatrix}$$

$$= \frac{1}{n-1} \begin{pmatrix} x_1^2 + \dots + x_n^2 & \overline{x_1y_1} + \dots + \overline{x_ny_n} \\ \overline{x_1y_1} + \dots + \overline{x_ny_n} & \overline{y_1^2} + \dots + \overline{y_n^2} \end{pmatrix}$$
The dragonal entries are the variances:

$$s_1^2 = \frac{1}{n-1} (x_1^2 + \dots + \overline{x_n^2}) \quad s_2^2 = \frac{1}{n-1} (\overline{y_1^2} + \dots + \overline{y_n^2})$$
The trace is the total variance:

$$Tr(S) = s_1^2 + s_2^2 = s^2$$
The off-diagonal entries are called covariances.
Eq. the (1,2) - entry is
(row 1) (row 2) = \frac{1}{n-1} (\overline{x_1y_1} + \dots + \overline{x_ny_n})
• If this is positive then $\overline{x_1} \leq \overline{y_1}$ generally have
the same sign: if you did above average on P1

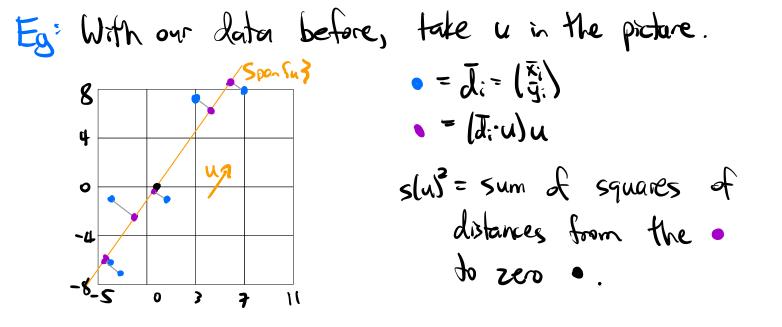
- then you likely did above average on P2 too, & vice-versa. The values are correlated.
- If this is negative then X: I J; generally have opposite signs: if you did above average on P1 then you likely did below average on P2, & vice-versa. The values are anti-correlated.
- If this is almost zero then the values are not correlated.

In our case:

$$S = \frac{1}{5} AA^{T} = \begin{pmatrix} 25 & 25 \\ 25 & 40 \end{pmatrix} \quad S_{2}^{2} = 40$$

$$(1,2) - covariance = 25 > 0; people who did above
average on PL likely did above average on P2.
The SVD will tell us which directions have the
largest & smallest variance.
$$(column means = 0)$$
Def: Let A be a recentered data matrix
A= $(d_{1} \cdot d_{n})$ where $J_{1} = \begin{pmatrix} X_{11} \\ X_{1m} \end{pmatrix} = i^{12}$ recentered data point
Let $S = \frac{1}{n-1} AA^{T}$ be the covariance matrix.
Let $u \in \mathbb{R}^{m}$ be a unit vector.
The variance in the u-direction is
 $S(u)^{2} = u^{T} S u$
NB: $S(u)^{2} = u^{T} S u$
NB: $S(u)^{2} = u^{T} S u$
NB: $S(u)^{2} = u^{T} L_{1} + AA^{T}) u = \frac{1}{n-1} (u^{T}A)(A^{T}u) = \frac{1}{n-1} (A^{T}u)^{T} (A^{T}u)$
 $= \frac{1}{n-1} (A^{T}u) \cdot (A^{T}u) = \frac{1}{n-1} (u^{T}A)(u^{T}u) = \frac{1}{n-1} (A^{T}u)^{T} (A^{T}u)$
 $Since A^{T}u = \begin{pmatrix} -J^{T} \\ -J^{T} \end{pmatrix} u = \begin{pmatrix} J_{1} \cdot u \\ J_{1} \cdot u \end{pmatrix}$ we get
 $S(u)^{2} = u^{T} Su = \frac{1}{n-1} ((J_{1} \cdot u)^{2} + \dots + (J_{n} \cdot u)^{2})$$$

$$MB: \overline{d_{1}} + u + d_{n} = 0 \text{ for a recentered deter natrix } A (p.8).$$
Hence $0 = 0 \cdot u = (d_{1} + u + d_{n}) \cdot u = (d_{1} \cdot u) + \dots + (d_{n} \cdot u)$
so it notes sence to compute the variance of
these numbers $(d_{1} \cdot u)_{3} \dots (d_{n} \cdot u)$ with mean $2c\sigma:$
 $s(u)^{2} = \frac{1}{n-1} ((d_{1} \cdot u)^{2} + \dots + (d_{n} \cdot u)^{2})$
Eq: If $u = (b) = e_{1}$ then $J_{1} \cdot u = (\frac{5}{3}) \cdot (b) = \overline{x}_{1}$, so
 $s(u)^{2} = s(e_{1})^{2} = \frac{1}{n-1} (\overline{x}^{2} + \dots + \overline{x}^{2}) = s_{1}^{2}$
This is just the variance of the X is.
In general, $S(e_{1})^{2} = s_{1}^{2}$
Proture: Recall that if u is a unit vector then
 $(v \cdot u)u = projection of v onto Spanful
) = (v \cdot u)^{2} = (v \cdot u)^{2} H(v \cdot u) cH^{2} = Horght^{2} of the
projection of v onto Spanful
) $\frac{u = e_{1}}{(d_{1} \cdot u)^{2}} = (\frac{1}{2} \cdot u)^{2}$
 $\frac{d_{1}}{(d_{1} \cdot u)^{2}} = (\frac{1}{2} \cdot u)^{2}$$



Now we apply quadrate optimization to slu)=uTSU.
Let
$$\lambda_1 = \sigma_1^2$$
 be the largest eigenvalue of $S = \frac{1}{n-1}AAT$.
Let u_1 be a unit λ_1 -eigenvector.
Quadratiz Optimization:
 u_1 maximizes $s(u)^2 = u^TSu$ subject to $||u|| = 1$
with maximum value σ_1^2
Therefore:
 u_1 is the direction of greatest variance
 $\sigma_1^2 = s(u_1)^2 = variance$ in the u_1 -direction

Our data points are "stretched out" most in the u-direction.

