



































































































































Elementary Matrices

These give a way to do row operations by
matrix multiplication

Def An elementary matrix is a matrix obtained from

In by doing one row operation

Eg Rit IR
o o n

R 1 2 I
R r

Fact If E is an mem elementary matrix
and A is an mxn matrix then

E A what you get by performing that
row operation on A

row operations E
left multiplicationby
elementary matrices






































































































































Eg 71 71I 2 3

ten I
1 1 771
Left multiplicationby f 9 does Rita R

Fact An elementary matrix is invertible Its inverse
corresponds to the elementarymatrix that un doe
the new operation

Why E matrix for Rit 2 Ra

E matrix for Ri ER I 9
E E E E In E do R 2R to In

first do R AR to Ins In
then do Rita R to heart

chew 97 1






































































































































What if you do multiple row operations
Consider these new operations their elementarymatrice

E Rit 2Rz Ez Red Ez R R

Apply in order to A

A TER EA IEEEELEA EYE CELEAD
LEE E A

The elementary matrices ended up in the opposite
order Why

E EEA E E LEA s first multiply by E
then by E then E3






































































































































Application to Invertibility
Suppose RREFCA In

So there are some number of new ops to
transform A In
Let Ea En be their elementary matrices

In Er En E A

At Er Er E

In particular A is invertible justifies part of
the Thm last time

This also justifies the algorithm for computing At

A 1 In IT In I B

Then In IB Er ED A 1 In

Er E A 1 Er Eal Iam 1st
matrix

B Er E A multiplicate
H

C AIBI CAICB






































































































































Triangular Matrices

Will lead to LU decomposition us computationally efficient

way to solve Avb for many values of b

Def A matrix is upper lower triangular if all
entries belowabove the diagonal are zero

upper triangular lower triangular

1 o
1

anything
A matrix is unitriangular if it is triangular
and all diagonal entries 1
upper unitsangular lower anitriangular

1 O O
ti I 1

NB A matrix is diagonal it r both upper and
lover triangular

Eg A matrix in REF is

o f jyupper Dular
0 0 3 9

O O O O






































































































































Eg If E is the elementary matrix for Rita Rj
for izj add a higher row to a lower row

then E is lower unidular

I L E

Fact If A B are nan upper Luni Datar
matrices then so are AB and A Lif A is
invertible

Likewise for lower Luni Bulan

Es 1 1






































































































































LU Decompositions

Fact If Gaussian elimination on A requires
no new swaps then

A L U

for L lower unidular and U in REF

Eg A Lu

Why do we care

Recall Solving Ax b for A nm requires a n'flops

Algorithm solving Ax b using A LU

Input An Lu factorization A LU vectorb
Output A solution of Ax b
Procedure

o Solve Ly b using forward substitution

9 y b
Yi bi

Yat y be
g t got yo

t b
n n flops






































































































































2 Solve Ux y using backward substitution

n flops

Then Ax Lux Lux Ly b

NB total complexity is 4242 flops

way faster than In

Ig Solve Ax E using

1 A Lu 1
g I forward1 Ly b ay ty so Este y E34 92 93 1

1 Ury
2 14 2 I backward o

2 2 4 3 2

4 3 4
Est x

check 1 1 11 E



Where does A LU come from How to

compute it

If you can run Gaussian elimination with ne new swaps
then Agsu REF using row ops of the form

Rito Rs Lij E 1 8 Beer

In this case U Er E A U REF
Ei elementary matrix for Rite Rj i j

dear down

Er is lower unidular

Er E is lower unidular

L Er E is lower unidular
and LU EE.IE DA IA A

NB L Er E records the row operations

keeps track of elimination

NB A LU is a matrix factorization it

is a way to write a matrix as a product of
simpler matrices We will learn many more of
these



Es A 11
I 2 3

E
ET LE E f
EEL E

KYL E L
U

E EE E EEE

To compute E EYES E EEE I

start with Is 98
o o l

REE
o z e

Et undo E L T

Rex 1 9Eiland Ez

Rites EE L
ET undo E



Check L D
Here's a better way to do the bookkeeping

Algorithm LU Decomposition 2 column method

Input A matrix where Gaussian elimination
requires no row swaps

Output A factorization A LU for L lower

unidulan and U in REF the output of
Gaussian elimination

Procedure Do Gaussian elimination keeping track
of the row operations as follows start
with a blank mm matrix L

as for each row replacement Rit c Rj put c

in the lip entry of L
Add 1 s O's to the remaining blank entries

of L CI's on thediagonal O's elsewhere

Then

A LU



Eg A I columns

U

withA
T T

7 a

m

I L
0 3 6LE I 1
I3

Ms Finding A LU is just Gaussian elimination t

extra bookkeeping us same complexity I n flaps

Then after computing A LU solving Ax b requires
a2nd flaps

Still have to do elimination once but then solving
Ax b for new values of b is much faster



Eg If A is 1000 1000 and we want to
solve Axis for tooo values of b

3 gigaflops to compute A LU

I megaflops x 1000 2 gigaflops to solve
Ax b 1000 times

That's 250 x faster than teraflops from
doing elimination 1000 times

demo

What about inverses
Wouldn't it be better to compute At and solve
A eb 1000 times
No for 2 reasons

1 Computing A takes a n flops twice

as long as the elimination step

12 Computing A s not numerically stable

less accurate due to rounding errors



from sympy import *
from time import time
 # This is the 10x10 matrix with 2's on the diagonal and 1's elsewhere
 #    eye(n) = nxn identity matrix; ones(n) = nxn matrix of 1's
 # (multiply by 1.0 to force it to use floating point arithmetic)
A = (eye(10) + ones(10)) * 1.0
 # This is the vector [1,1,1,1,1,1,1,1,1,1]
b = ones(10, 1) * 1.0
start = time()
 # Compute LU decomposition
L, U, _ = A.LUdecomposition()
 # Solve using forward- and reverse-substitution 1000 times
for _ in range(1000): U.upper_triangular_solve(L.lower_triangular_solve(b))
end = time()
print(end - start)
 # "7.144780397415161" (seconds)
 
start = time()
 # Solve using elimination 1000 times
for _ in range(1000): A.solve(b)
end = time()
print(end - start)
 # "48.048372983932495" (seconds)
 # Roughly 10x slower!



Maximal Partial Pivoting
X IÉ

x tx 2 has one solutions X X 1

Let's tweak it a little bit

g
lo xitxzel
x t x

presumably has one

solution xyz bi

107 z REEF Hot son

10 X 4 2 1

1 1017 2
2 1017

3 1 14 5 It it al

x lo'd x I 1

Let's try this on a computer demo

What went wrong
Most programming languages use 64 digit floating
point numbers That means it has a 16digits
of precision

The computer thinks 1 1017 1017 2 1017



from sympy import *
 # 1e-17 is 10^(-17)
A = Matrix([[1e-17, 1.0, 1.0], [1.0, 1.0, 2.0]])
 # This does R2 -= 10^(17) R1
 # (force sympy to use the smaller pivot)
A.row_op(1, lambda v, j: v - 1e17*A[0,j])
pprint(A)
 #   [1e-17    1     1]
 #   [0    -1e17 -1e17]
 # Now do Jordan substitution
pprint(A.rref(pivots=False))
 #   [1 0 0]
 #   [0 1 1]
 # This answer is numerically very wrong!



110 17175 I in t.io
10 x t xz 1

Xz I

x 10170 0

o 1 11,1 not numerically stable

What went wrong
Dividing by 10

17
produced a huge number 10

all errors just exploded

On a computer you never want to divide

by tiny numbers

Solution Use the larger pint on absolute value

o I's is in
I

0REEF o 11 I Hotel
1 21017 1

it
x 1

I i



Gaussian Elimination using Maximal Partial Pivoting
In step a row swap so that the largest
number in the column on absolute value or

the pint
This is much more numerically stable

avoids dividing by tiny numbers

PALU Decompositions

Recall LU only works when you don't need to
row swap when eliminating

But elimination works much better with row swaps
Need to tweak LU

Idea Do all the row swaps you need first then
do elimination without row swaps

How do you know in advance which row swaps to
do You don't need to do mere bookkeeping

Def A permutation matrix is a product of elementary
matrices for row swaps



PA LU Decomposition Any matrix A has a

factorization

pA
Do a bunch of row swaps
on A

where

P permutation

then do an LU decamp

L lower unitriangular matrix

U REF matrix
maximal

Es A E it a

o I 2ÉE
maximal

5Pffatng EB IF P
KERI I EO 5

U EREEP A
not lower unidular



Trick P E E R E E PIERRE
ten unitular

P E E Pz BEE

ftp 4
Rst ER

IF I 8,7
lower
unidular

Then U E P E E PIPP A

PA LU

for PERP L E P E E Pi

Here is an efficient way of doing
the bookkeeping



Algorithm PA LU Decomposition 3 column method

Input Any matrix A
Output A factorization PA LU where

p permutation matrix

L lower unitriangular matrix

U REF matrix

Procedure Perform Gaussian elimination using
any pivoting strategy leg maximal partial
pivoting Keep track of row operations as

follows start with a blank matrix h and
an identity matrix P
for each row replacement Rit c Rj put e
in the lip entry of L as before

foreach row swap Rie Rj Swap the
corresponding rows of L and P

Add 1 s O's to the remaining blank entries

of L CI's on thediagonal O's elsewhere

Then
PA LU



Eg A E E

SHIAa
pigsty

teamUcd
is 1 P blank IIis

O 1 0

0 5 5
O O I

0 5 59
o

fi IO O I

1 O O

O 5

I iii I
I

Ei
check

0 5 591 I 1 1
I



Can we still use this to solve Ax b

Algorithm solving Ax b using PA LU
Solving Ax b is the same as PAX Ab so

o Compute Pb re order the entries of b steps

o Solve Ly Pb using forward substitution IanH
2 Solve Ux y using backward substitution afters

Then PAX LUX Ly Pb

Ax b multiply both sides by P Ytotal In flops

Eg Solve Ax b for

A E 6 1 7
lol Pb 1 911 7 1
1 I y pb f

9 co

yet 5
93 0

1 I EEE I


