Vector and Matrix Algebra

These basic definitions don't need to be done in a line lecture - that's why I'm recording this one.

Since we'll be doing algebra with vectors & motrices as well as numbers, we give "numbers a new name to distinguish them.

"definition")

Def: A scalar is a real number.

"is an element of"

Notation: CERE the set of all

real numbers

"example"

E; 2, -m, e¹³, 0 e R

Def: A rector is a finite (ordered) list of numbers The size of a rector is the length of the list. The number in the list are the coordinates.

Natotion' v E RE of n numbers" n= the size

Notation
$$V \in \mathbb{R}^3$$
 of a number $V = \begin{pmatrix} 2 & 1 & 1 \\ -7 & 1 & 1 \end{pmatrix} \in \mathbb{R}^3$ $V = \begin{pmatrix} 2 & 1 & 1 \\ -7 & 1 & 1 \end{pmatrix} \in \mathbb{R}^4$ (size 3)

"note"

We will usually write vectors in a column like $v = {3 \choose 3}$ (a "column vector") but this is just notation; v = (1, 2, 3) means the same thing.

NB : Some people decorate vectors with boldface: V

but I won't do that since it's connoying and it's usually clear from context which letters represent vectors.

Important Example:

The unit coordinate vectors in \mathbb{R}^2 are vectors with one coordinate = 1 and the rest = 0.

Notation:
$$e_{i} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 $e_{s} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $e_{s} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^{n}$

This notation is fixed for the whole semester.

The size of e; must be inferred from context.

In 123 the unit wordinate vectors one:

$$e' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad e' = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad e' > \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Eg: The zero rector is the rector
$$O = \begin{pmatrix} 0 \\ \vdots \end{pmatrix} \in \mathbb{R}^n$$

(again the size must be inferred from context)

Def: Two rectors are equal if they have the same size and the same coordinates.

Eg: $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ since the sizes are different.

Vector Algebra

You can multiply a vector by a scalar:

Scalar Multiplication:

ceR,
$$v = \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
 where $c \cdot v = \begin{pmatrix} c \\ \vdots \\ c \\ c \end{pmatrix} \in \mathbb{R}^n$ (scalar) κ (vector) = (vector)

You can add I subtract vectors componentwise:

Vector Addition & Subtraction:

$$u = \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \quad v = \begin{pmatrix} y_i \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$

$$u \pm v = \begin{pmatrix} x_i \pm y_i \\ x_n \pm y_n \end{pmatrix} \in \mathbb{R}^n$$

$$(vector) \pm (vector) = (vector)$$

NB: You can only add/subtract vectors of the same size.

You can "multiply" two vectors, but you get a scalar.

Det Product/Inner Product:

$$u = \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \quad v = \begin{pmatrix} y_i \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$

$$v = x_1y_1 + \cdots + x_ny_n \in \mathbb{R}$$

(vector) = (scalar)

NB: You can only dot vectors of the same size.

Eq:
$$\binom{2}{3} \cdot \binom{2}{4} = 1-2+3\cdot(-1)+3\cdot 4 = 12$$

$$E_{3}$$
 $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = 1(-2) + 2(-1) + 2(2) = 0$

Eg:
$$\binom{1}{3}$$
. $\binom{1}{3}$ = $1.1+2.2+3.3 = 14$

NB: If v= (xy-yxn) then v·v= x2+--+x2.

This is a nonnegative number; it is =0

(You can't take any other powers of a vector: $v^3 = v \cdot v \cdot v$ doesn't make sense because $v \in \mathbb{R}^n$ and $v \cdot v \in \mathbb{R}$.)

Rules for Vector Algebra: CER ususe 127

(1) c(u±v) = cu±cv (distributivity over scalar x)

(commutativity of.)

(distributivity over.)

Eg: if $a_3u_3x_3y \in \mathbb{R}^n$ then $(u+v)\cdot(x+y) \stackrel{(4)}{=} (u+v)\cdot x + (u+v)\cdot y$ $\stackrel{(3,4)}{=} u\cdot x + v\cdot x + u\cdot y + v\cdot y$

Upshot: FOIL works fine.

You can add and scalar multiply at the same time:

Def: A linear combination of vectors $v_{i_3-j_4} \in \mathbb{R}^m$ with weights $x_{3-j_4} \times_{i_5} \in \mathbb{R}^m$ is the vector $x_{i_4} \cdot x_{i_5} \cdot x_{i_5}$

Eg: If $v=(x_1, x_1, x_2) \in \mathbb{R}^m$ then $v = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \cdots + x_m \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $= x_1 e_1 + x_2 e_2 + \cdots + x_m e_m$

The coordinates of v became the weights of this linear combination of unit coordinate vectors.

Matrix Algebra

Def A matrix is a box holding a 2D grid of numbers. The size of a matrix is (#rows) x (#cols). We usually (but not always) write m=#rows n=#cols so A is an man meetrix.

The (isi) tentry of A is the number in the ith row and ith column.

Eg: Az (a11 a12 a13 a14)

(a21 a22 a23 a24)

(a31 a32 a37 a34) 13 a 3×4 matrix.

The (ij)-entry is as.

The (iji)-entry is ass. Sometimes I'll use square brackets-it means the same means the same matrix.

The (3,2) -entry is 6.

Def: The diagonal entires of a matrix are the (is)enthes for i=i:

(a11 a12 a13 a14)
(a21 a22 a23 a24)
(a31 a32 a33 a34) - diagonal entries Def: A matrix is diagonal if all non-diagonal entries are zero:

$$\begin{pmatrix} a_{11} & O & O & O \\ O & a_{22} & O & O \\ O & O & a_{37} & O \end{pmatrix} = any number$$

Def: A matrix is square if (# rows) = (# columns):

Eg: The nxn identity matrix is

$$I_{n} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

This is a square, diagonal matrix.

Its columns are es-sen. (S- are its rows.)

Eg: The man zero matrix is

This is a diagonal matrix because the nondragonal entries are zero.

(so are the dragonal entries)

Scalar Multiplication & Matrix Addition/Subtraction are again done componentwise?

$$C \cdot \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

$$\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix} \pm \begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix} = \begin{pmatrix}
a_{11} \pm b_{11} & a_{12} \pm b_{12} \\
a_{21} \pm b_{21} & a_{22} \pm b_{22}
\end{pmatrix}$$

$$\begin{pmatrix}
a_{31} \pm b_{31} & a_{32} \pm b_{32}
\end{pmatrix}$$

$$\begin{pmatrix}
a_{31} \pm b_{31} & a_{32} \pm b_{32}
\end{pmatrix}$$

They sortisfy distributivity: $c(A\pm B) = cA\pm cB$

NB: You can only add/subtract matrices of the same size.

NB: A rector of size n is just an nx1 matrix

Def: A row rector is a motive will one row.

You can multiply a matrix & a vector:

Matrix × Vector = Vector?

There are 2 ways to compute this:

(1) By Columns: If A has columns v_{5-7} $v_{n} \in \mathbb{R}^{n}$ then $Ax = \left(v_{1} - v_{n} \right) \left(\frac{x_{1}}{x_{n}} \right) = x_{1}v_{1} + \cdots + x_{n}v_{n} \in \mathbb{R}^{n}$ for $x \in \mathbb{R}^{n}$.

The coordinates of x are the weights of the columns of A in a linear combination.

A(xn) is the linear combination of the columns of A with weight xy-yxn

(2) By Ross: It A has ross wow. ER" then $Ax = \left(\frac{\omega_1 - \omega_2}{\omega_m - \omega_m}\right) = \left(\frac{\omega_1 \cdot x}{\omega_m \cdot x}\right) = \left(\frac{\omega_1 \cdot x}{\omega_1 \cdot$

The ith coordinate of Ax is (row i) · x

NB: You get the same answer either way!
(#2 13 Probably easier by hand)

Eg:
$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
 $\begin{pmatrix} 2 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - 1 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} - \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 4 \cdot (-1) \\ 2 \cdot 2 + 5 \cdot (-1) \\ 3 \cdot 2 + 6 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 2 - 4 \\ 4 - 5 \\ 6 - 6 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

NB: Ax only makes sense when the size of x equals
the number of columns of A:

$$A \cdot x \sim A_x$$
 $(m \times n) (n \times 1)$
 $(m \times 1)$

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 1 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + 0 \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

Eg:
$$I_{x} = \left(e_{1} \cdot e_{n}\right) \begin{pmatrix} x_{i} \\ \vdots \\ x_{n} \end{pmatrix} = x_{i} e_{1} + \cdots + x_{n} e_{n} = \begin{pmatrix} x_{i} \\ \vdots \\ x_{n} \end{pmatrix} = x$$

Matrix × Matrix = Matrix: Column Form

Let A be an mxn matrix.

Let B be an nxp matrix

with columns un --, upeR

The product AB is the mxp mostrix with columns Au, ..., Aue R.:

$$AB = A \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} A_{u_1} & \cdots & A_{u_p} \\ 1 \end{array} \right)$$

NB: This only makes sense if (#cols of A)=(#rows of B)

$$\begin{array}{ccc} A & B & AB \\ (m \times n) \times (n \times p) & \longrightarrow m \times p \end{array}$$

NB: You can compute the Au; using #1 or #2. Using #2: if A has rows won wan then $Au := (w_1.u_1,...,w_n.u_i) so$ $\begin{pmatrix} -\omega^{w} - \\ -\omega^{s} - \\ \end{pmatrix} \begin{pmatrix} () \\ () \\ () \\ \end{pmatrix} = \begin{pmatrix} \omega^{w} \cdot \alpha^{s} & \omega^{w} \cdot \alpha^{s} \\ \omega^{s} \cdot \alpha^{s} & \omega^{s} \cdot \alpha^{s} \\ \omega^{s} \cdot \alpha^{s} & \omega^{s} \cdot \alpha^{s} \end{pmatrix}$ So (iii) entry of AB = (now; of A). (now) of B) Es: Compute $\begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 4 & -1 \end{pmatrix}$. $\begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 4 & -1 \end{pmatrix}$ $= \left(1\binom{1}{-1} + 3\binom{2}{2} + 4\binom{3}{-4}\right)$ $3\left(\frac{1}{1}\right)+1\left(\frac{2}{5}\right)-1\left(\frac{3}{4}\right)$ $=\begin{pmatrix} 17 & 2 \\ -13 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 4 & 1 \cdot 3 + 2 \cdot 1 + 3 \cdot (-1) \\ -1 \cdot 1 + 2 \cdot 2 + (-4) \cdot 4 & -1 \cdot 3 + 2 \cdot 1 + 1 \cdot (-1) \end{pmatrix}$

 $= \begin{pmatrix} 17 & 2 \\ -3 & 3 \end{pmatrix}$

Eg:
$$AI_n = A(e, -e_n) = (Ae, -Ae_n)$$

$$= (19col of A) - (nth colof Al) = A$$

$$\underbrace{T_m} A = \underbrace{T_m} \left(\underbrace{v_1 \cdots v_n}_{1} \right) = \left(\underbrace{T_m v_1 \cdots T_m v_n}_{1} \right)^{p.12} \left(\underbrace{v_1 \cdots v_n}_{1} \right) = A$$

$$I_mA = A = AI_n$$

Def: A column vector times a row rector is called on outer product:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \cdot \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} X_1 y_1 & X_1 y_2 & X_1 y_3 \\ X_2 y_1 & X_3 y_2 & X_3 y_3 \end{pmatrix}$$

$$2 \times 1 \qquad | \times 3 \qquad \longrightarrow \qquad 2 \times 3$$

$$E_{3}: \left(\frac{1}{2}\right) \left(\frac{3}{4} + \frac{5}{5}\right) = \left(\frac{3}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) = \left(\frac{3}{6} + \frac{4}{8} + \frac{5}{10}\right)$$

Matrix × Matrix = Motrix: Outer Product Form Let A be an mxn matrix. with columns vising vie R" Let B be an nxp matrix with mas was or ERP The product AB is the mxp matrix AB= (', ... ',) (- w, -) $= V_1 \omega_1^T + V_2 \omega_2^T + \cdots + V_n \omega_n^T$ (wit means write wi as a now vector) Eg: $\begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -4 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 4 & -1 \end{pmatrix}$ $= {\binom{1}{-1}}{\binom{1}{3}} + {\binom{2}{2}}{\binom{2}{-1}} + {\binom{3}{-4}}{\binom{4}{-1}}$ $= \begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix} + \begin{pmatrix} 4 & -2 \\ 4 & -1 \end{pmatrix} + \begin{pmatrix} 12 & -3 \\ -16 & 4 \end{pmatrix} = \begin{pmatrix} 17 & 2 \\ -18 & 3 \end{pmatrix}$

There is one more algebraiz operation on matrices:

Def: Let A be an mxn matrix. Its transpose is the matrix AT whose rows are the columns of A (4 vice-versa)

The (iii)-entry of A is the (ivi)-entry of AT:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \longrightarrow A^{T} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix}$$

$$(1,2)-\text{entry}$$

$$(2,1)-\text{entry}$$

You can think of transposing as "reflecting over the diagonal"

$$E_8$$
 $A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$ $A^T = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

VTW = N.M for N'MELY,

VTW= inner product (scalar) VWT= outer product (matrix)

Def: A matrix is symmetric if it equals its transpose: A=AT

MB: symmetriz motrices are square!

$$F_{3}: A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$
 is symmetric

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 0 & 5 & 6 \end{pmatrix}$$
 3 not $A^{T} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$

Eg: Let A be an mxn matrix with columns

Vy-y/nGIR- Then AT is nxm -> ATA is nxn-

$$A = \begin{pmatrix} v_1 & v_2 \\ v_1 & v_2 \end{pmatrix} \longrightarrow A^T = \begin{pmatrix} -v_1 & -v_2 \\ \vdots & -v_2 \end{pmatrix}$$

$$A_{L} = \begin{pmatrix} -\Lambda^{2} - \\ -\Lambda^{2} - \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ \Lambda^{2} - \Lambda^{2} & \Lambda^{2}$$

Since vivy = vivi, this is symmetric.

ATA is the matrix of column dot products. It is symmetric.

The matrix ATA will play on huge role in the 2nd half of the course.

Rules for Matrix Algebra:

Let A, B, C be matrices. Assume all sizes are compatible in what fillows.

-> Thus it makes sense to write ABC (evaluate AB or BC first-> some thing)

(2) $A(B \pm C) = AB \pm AC$ $(A \pm B)C = AC \pm BC$ (distributivity)

$$(5) (\lambda^{r})^{T} = A$$

 $(6)(A\pm B)^{T} = A^{T} \pm B^{T}$

(7) (AB)T = ATBT BTAT

(double transpose)

(transpose & sums)

(transpose & products)

MB: ATBT may not even make sense: A: mxn B: nxp \rightarrow AB: (mxn)-(nxp) = (mxp) ATBT: (nxm)·(pxn) = ?? BTAT: (pxn)·(nxm) = (pxm)

 $E_{8} (A^{T}A)^{T} \stackrel{(a)}{=} A^{T}(A^{T})^{T} \stackrel{(a)}{=} A^{T}A$ $\Rightarrow A^{T}A \approx \text{symmetriz (again)}$

Eg: It A is square then AA makes sense, as do A.A.A, A.A.A.A, etc.

Def: If A is square then its nth power (n>0) is $A^n = A - A \qquad (n \text{ times})$

This only makes sense because of associativity. Question: What about A-1? (week 3)

Converte that faits in general:

$$AB \neq BA$$

$$Eg: \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

Cancellation fails in general:

$$A \neq 0, AB = A(\neq) B = C$$

$$E_{3} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}^{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}$$