
 

Review DCA so far
A f d men data matrix whose columns contain

n samples data points dis dn
of m measurements each

A fi di A Iijima Mi mean of row
measurementi

recentered data matrix obtained fromA by
subtracting the means of the measurements Crews

rows row1 row 1 Go 2

5 1 AAI bow 2 town Crow2 iron

mem covariance matrix containing the variances of
the measurements on the diagonal

rani roni fit I s

total variance is s sit tsin Tr s

NB total variance is just
s sit tsk x.tt txt t t fine xii

hi sum of squares of all entries of A
a lldill't think

For me Rn lull I the variance in the u direction is

slum utSu flat a t o t ldi.at



If 92 is the largest eigenvalue of S then this
is maximized at a unit of eigenvector u with
maximum value of

U is the direction of largest variance

Eg From last time

A 15 Y 18 1 E I 3 Ms

A É E I 1
is

S 3AAT I II 5 20 40 6

92256 9 8
Danfu

4
a 185

Iriarte
8É o 3 7

di projection of onto Span us

So the directionof largest variance is a and the
variance in that direction is 456.9 20,40

Our data points are stretched out most in the
a direction



NB Here's how I should butwon't grade the final exams

Put the scores of each problem in an men matrix to
m problems ne students

Subtract ooo averages fun sum to recenter

matrix A d din

Compute the 1 principal component a

D I D max score on problem j

The score for student i is

9 percent

This maximizes the standard deviation by reweighting

the problems



Relationship to SVD Eigenvalues eigenvectors of

S AAT A HAST
compute the SVD of E A and At
A aunt t aunt At a nut torment

NB the SVD of A is

A Flaunt t tiny Grunt
r a z 7 or 0 are the nonzero eigenvalues of S
NB the singular values of A are Fig For

The trace of a square matrix is the sum of its eigenvals

total variance s Toys at ta
Aw

us our orthonormal eigenvectors of S
left singular vectors of A of A
S EA A I not CEA TEA

Vi f f Atu
right singular vectors of A of A

We knew that a is the direction of largest variance
What about us ur



00 with Extra Constraints

slab's utsa is maximized

subjectto talk
at u with sludge

a is the directionwith largest variance

Slu is maximized

subjectto hall l and at u
at us with slaves
us is the directionwith 2nd largest variance

Slu is maximized

subjectto fall l and at us Utu it

at us with s lui o

ur is the directionwith ith largest variance

NB if A has full row rank rm then

slab's uts u is minimized

subjectto talk
at ur with sludge

un is the directionwith smallest variance

If it doesnothave full row rank then slue 0
for any ue Nal At 903



The columns of Flauirit are the orthogonal
projections of the columns of A onto SpanTui

A Equiv.tt Earnt
breaks apart your data points into principal
components

Def Let A be a reentered datamatrix with SVD

A Equiv.tt Taunt

The ith principal component of A is Flaunt

The columns of the ith principal component of A
are the orthogonal projections of the columns of A
onto Spantui direction of it largest variance



Eg In our example ITA quivittguist

92 56.9 05 3.07
95 40

44 8 88 u 19
5 1

20

Total variance 92 64 56.9 3.1 60 20 40

di og
Spanfu

columns of squirt
projections of onto not

r
columns of Favart smallest

projections of onto88g 8 5 0 3 7 11

NB In this case slat is minimized at us with
minimum value Oi smallest eigenvalue of S
stud dins t daud

sun of squares of lengths of

Conclusion The direction of largest variance is the
lineof best fit in the sense of orthogonal least

squares and the

lemon sum of squares of lengths of
In 1 slay In 1 of



Subspace s of Best Fit
What happens in general m 2

Def Let V be a subspace of R The variance

along V of our Irecentered data points dis di is

slr llldiulte tllld.lv l
Porthogonal projections

NB If V Span a for u a unit rector then
Cair Cdi a u so Aldi v11 Idi a Hulk dial
so

s V III a t o din s u

Recall if u tr then Muerte lull't lull

Taking a di v k di it gives digfIIaAdil Illdint't Aldi all decomposition

Sum over all i

For any subspace Vs

sluts VA Hail't Halt

p
total variance qt ta



NB s v4 I llld.su e tllldnlrtt
is I x the sum of the squares of the orthogonal
distances of the di to V

Jef The d space of best fit in the sense of
orthogonal least squares is the d dimensional
subspace V minimizing s rt The error is slut

in terms ofdistances it's In 1 rt
NB Minimizing s Vt means maximizing s r

since s v t s rt total variance

Then let A be a centered data matrix with SVD
A quintt torerunt

Thed space of best fit to its columns is

V Span us sad

The variance along V is s V at tod and the
error is s Ut aft on

So you split the total variance at toes slots A
into the large part start top and the small part
STATEGt t Gr

Eg The line of best fit is the first principal
component Vespansuit The error ait to



Eg The plane of best fit is the span of the first
2 principal components V Span u ur error East tort

Eg Suppose

A 10 unit 8azvatt 2usu.tt tune
Then A fits the plane VaSpanky.cn to

a small error 27.1

But A does not fit the line L Spann
well the errors 84.24.1

Upshot If a od are much larger than Oda so

then your data closely fit the d space
V SpanGuy gud

but not a smaller subspace like Span us nude

NB This is all applied to the recentered data points
Your original data points dis dn columns of A
fit the translated subspace

Ve Mum add back the means

See the Netflix problem on HW 15


