MATH 218D-1 PRACTICE FINAL EXAMINATION

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 180 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic. You may bring a 8.5×11**-inch note sheet** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 180 minutes, without notes or distractions.

Problem 1. [15 points]

a) Which one of the following symmetric matrices is positive-definite? Circle the correct answer.

b) Find the *LU* decomposition of the following positive-definite symmetric matrix.

$$
A = \begin{pmatrix} 2 & -4 & 0 \\ -4 & 11 & -9 \\ 0 & -9 & 31 \end{pmatrix}
$$

$$
L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \qquad U = \begin{pmatrix} 2 & -4 & 0 \\ 0 & 3 & -9 \\ 0 & 0 & 4 \end{pmatrix}
$$

c) Find the $A = LDL^T$ decomposition and Cholesky decomposition $A = L_1 L_1^T$ $\frac{T}{1}$ of the matrix in **b)**. p

$$
L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad L_1 = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ -2\sqrt{2} & \sqrt{3} & 0 \\ 0 & -3\sqrt{3} & 2 \end{pmatrix}
$$

Problem 2. [20 points]

Consider the quadratic form

$$
q(x_1, x_2) = 3x_1^2 + 3x_2^2 + 2x_1x_2.
$$

a) Find the symmetric matrix *S* such that $q(x) = x^T S x$.

$$
S = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}
$$

b) Find an orthogonal matrix Q and a diagonal matrix D such that $S = QDQ^T$.

$$
Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}
$$

c) Find the minimum and maximum values of $q(x_1, x_2)$ subject to the constraint x_1^2 + $x_2^2 = 1$, and all vectors (x_1, x_2) at which these values are achieved.

Min:
$$
q = 2
$$
 is achieved at $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \pm \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

\nMax: $q = 4$ is achieved at $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \pm \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

d) Draw the ellipse defined by the equation $q(x_1, x_2) = 1$. Grid lines are 0.1 units apart. Be precise!

Problem 3. [20 points]

Consider the matrix

$$
A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}.
$$

a) Compute the symmetric matrix $S = AA^T$.

$$
S = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}
$$

b) Find the eigenvalues of *S*, and find an orthonormal eigenbasis.

Eigenvalues: 4, 2 Eigenbasis:
$$
v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$
, $v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

c) Compute the singular value decomposition of *A* in outer product form.

$$
A = 2\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} + \sqrt{2}\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}
$$

d) Compute the cross product

$$
\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}
$$

e) Compute the singular value decomposition of *A* in matrix form.

$$
A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \end{pmatrix}^{T}
$$

Problem 4. [20 points]

Consider the initial value problem

$$
\begin{cases}\nu'_1 = u_1 & u_1(0) = 1 \\
u'_2 = u_1 + 2u_2 & u_2(0) = 0\n\end{cases}
$$

a) Find a matrix *A* such that $u' = Au$, where $u = (u_1, u_2)$.

$$
A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}
$$

b) Compute the characteristic polynomial of *A*, and find the eigenvalues.

 $p(\lambda) = \lambda^2 - 3\lambda + 2$ Eigenvalues: 1 and 2

- **c)** Find an eigenbasis of *A*.
- **d)** Solve the initial value problem.

$$
\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}
$$

$$
u_1 = e^t
$$

$$
u_2 = e^{2t} - e^t
$$

Problem 5. [20 points]

Consider the subspace V of \mathbb{R}^4 defined by the equation

$$
x_1 + x_2 + 2x_3 - 12x_4 = 0.
$$

- **a)** Compute an *orthogonal* basis for *V*.
- **b**) Compute an *orthogonal* basis for V^{\perp} .
- **c)** Compute the projection matrix P_V .
- $P_V =$ 1 150 $\sqrt{ }$ L L 149 −1 −2 12 −1 149 −2 12 −2 −2 146 24 12 12 24 6 λ -l -1

 $\sqrt{ }$ \int

 $\sqrt{ }$

λ

 $\sqrt{ }$

−1 −1 1 0

λ

 $\vert \cdot$

 $\sqrt{ }$ \int

 $\sqrt{ }$

L L

 $\overline{\mathcal{L}}$

L L

 $\vert \cdot$

L L

 $\overline{\mathcal{L}}$

d) Compute the orthogonal projection of the vector $b = (-1, -1, 4, -12)$ onto *V*.

 $b_V =$ $\sqrt{ }$ L L -2 -2 2 0 λ -l -1

e) The distance from $(-1, -1, 4, -12)$ to *V* is $\Big| 5$ p 6 . $\sqrt{ }$

λ

- I -1

λ

 \mathcal{L} $\overline{\mathcal{L}}$

 \int

 \mathcal{L} $\overline{\mathcal{L}}$

 \int

- I -1

L L

Problem 6. [25 points]

The centered data matrix

$$
A = \begin{pmatrix} -2.73 & 0.714 & 1.90 & -2.08 & 2.11 & 0.0825 \\ -8.48 & 2.73 & 0.187 & -1.53 & 6.99 & 0.106 \\ -5.63 & 2.03 & -7.30 & 6.37 & 4.71 & -0.179 \\ -4.91 & 1.64 & 3.12 & -3.91 & 3.91 & 0.149 \end{pmatrix}
$$

has normalized singular value decomposition

$$
\frac{1}{\sqrt{5}}A = 7\begin{pmatrix} 0.195 \\ 0.706 \\ 0.575 \\ 0.364 \end{pmatrix} \begin{pmatrix} -0.738 \\ 0.245 \\ -0.164 \\ 0.0479 \\ 0.606 \\ 0.00268 \end{pmatrix}^T + 5\begin{pmatrix} 0.297 \\ 0.260 \\ -0.753 \\ 0.527 \end{pmatrix} \begin{pmatrix} -0.122 \\ 0.0231 \\ 0.694 \\ -0.704 \\ 0.0853 \\ 0.0237 \end{pmatrix}^T + 0.1\begin{pmatrix} 0.867 \\ -0.682 \\ -0.000602 \\ -0.498 \end{pmatrix} \begin{pmatrix} -0.284 \\ -0.682 \\ 0.465 \\ 0.0173 \\ -0.00242 \end{pmatrix}^T + 0.05\begin{pmatrix} -0.350 \\ 0.659 \\ -0.320 \\ -0.585 \end{pmatrix} \begin{pmatrix} 0.380 \\ -0.539 \\ -0.284 \\ -0.285 \\ 0.626 \end{pmatrix}^T
$$

a) The total variance of the data points is $s^2 = \begin{bmatrix} 74.0125 \end{bmatrix}$.

b) The nonzero eigenvalues of $\frac{1}{5}A^{T}A$ are $\Big|$ 49, 25, .01, .0025 $\Big|$.

c) $\frac{1}{5}AA^T = QDQ^T$ where *Q* and *D* are orthogonal and diagonal matrices, respectively:

$$
Q = \begin{pmatrix} 0.195 & 0.297 & 0.867 & -0.350 \\ 0.706 & 0.260 & 0.0176 & 0.659 \\ 0.575 & -0.753 & -0.000602 & -0.320 \\ 0.364 & 0.527 & -0.498 & -0.585 \end{pmatrix} \qquad D = \begin{pmatrix} 49 & 0 & 0 & 0 \\ 0 & 25 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \\ 0 & 0 & 0 & 0.025 \end{pmatrix}
$$

d) The variance $s(u)^2$ is maximized at the unit vector

$$
u = \begin{pmatrix} 0.195 \\ 0.706 \\ 0.575 \\ 0.364 \end{pmatrix}
$$
 with maximum value $s(u)^2 = 49$.

e) The line *L* of best fit is spanned by the vector

$$
\begin{pmatrix} 0.195 \\ 0.706 \\ 0.575 \\ 0.364 \end{pmatrix}
$$
 with $s(L^{\perp})^2 = 25.0125$

f) The orthogonal projection of the first column of *A* onto *L* is

g) The plane *V* of best fit is spanned by the vectors

$$
\left\{ \begin{pmatrix} 0.195 \\ 0.706 \\ 0.575 \\ 0.364 \end{pmatrix}, \begin{pmatrix} 0.297 \\ 0.260 \\ -0.753 \\ 0.527 \end{pmatrix} \right\} \text{ with } s(V^{\perp})^{2} = 0.0125
$$

h) What kind of linear space best describes the shape of the data? Circle one.

line plane 3−space **R** ${\bf R}^4$

i) Suppose that the recentered data point $(1, 1, x, y)$ was drawn from the same data set. What would you predict for the values of *x* and *y*?

[**Hint:** to maximize your exam score, finish the rest of the exam first.]

 $x = -2.29$ $y = 1.78$

Problem 7. [20 points]

a) A certain 2×2 matrix *A* has the singular value decomposition

$$
A = 3u_1v_1^T + 2u_2v_2^T
$$

where u_1, u_2, v_1, v_2 are drawn in the diagrams below. Given *x* and *y* in the diagram on the left, draw *Ax* and *Ay* on the diagram on the right.

b) A certain 2×2 matrix *B* has singular value decomposition

$$
B = 13 \binom{3/5}{4/5} \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right).
$$

Draw and *label* Row(*B*) and Nul(*B*) on the grid on the left, and draw and *label* Col(*B*) and $\text{Nul}(B^T)$ on the grid on the right.

Problem 8. [20 points]

True/false problems: **circle** the correct answer. No justification is needed.

All matrices in this problem have real entries.

Problem 9. [20 points]

Short-answer problems: no justification is necessary.

a) Find the matrix *A* satisfying

$$
A\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \qquad A \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = 0 \qquad A \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}.
$$

$$
A = \begin{pmatrix} -1 & -2 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}
$$

b) Which of the following sets form a basis for $\text{Span}\left\{\binom{1}{1}, \binom{-1}{1}\right\}$ $\binom{1}{1}$, $\binom{1}{2}$ $_{2}^1$ }?

$$
\bigcirc \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \qquad \bigcirc \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \qquad \bigcirc \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}
$$

$$
\bigcirc \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\} \qquad \bigcirc \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \qquad \bigcirc \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \qquad \bigcirc \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}
$$

- **c)** Let *A* be a 4 × 10 centered data matrix and let *V* be a subspace of **R** 4 . Suppose that $s(V^{\perp})^2 = 0$. What does this tell you about the columns of *A*? They all lie on *V*.
- **d**) Let *A* be a 2×2 matrix that is neither invertible nor diagonalizable. What is the characteristic polynomial of *A*?

$$
p(\lambda)=\lambda^2
$$

- **e**) Let *A* be a 2 \times 3 matrix such that $Ax = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\binom{1}{2}$ does not have a solution. Which of the following are *impossible*?
	- The solution set of $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{1}$ is empty.
	- The solution set of $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{1}$ is a point.
	- The solution set of $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{1}$ is a line.
	- \bigcirc The solution set of $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{1}$ is a plane.
	- The solution set of $Ax = 0$ is \mathbb{R}^3 .
The solution set of $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is a
	- The solution set of $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{1}$ is a plane and the solution set of $Ax = 0$ is \mathbb{R}^3 .

Problem 10. [20 points]

Give examples satisfying the following requirements, or explain why no such example exists. (No justification is needed if an example does exist.)

```
All matrices in this problem have real entries.
```
- **a**) A 2 × 2 symmetric matrix *S* with eigenvalue $\frac{1}{2}(1 + i$ $\overline{}$ 3). Impossible by the spectral theorem.
- **b**) A 3×2 matrix *A* such that A^+A is the identity matrix. Any 3×2 matrix with full column rank will do. For instance,

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.
$$

- **c**) A nonzero 2×2 matrix *A* such that $Ax = 0$ is inconsistent. Impossible: $x = 0$ is a solution.
- **d**) A basis for \mathbb{R}^3 containing the vector $(1, 1, 1)$. There are many correct answers. For instance,

e) A basis for \mathbb{R}^3 containing the vector $(0, 0, 0)$. Impossible: a set containing the zero vector is linearly dependent.