MATH 218D-1 PRACTICE MIDTERM EXAMINATION 1

Name Duke NetID	
-----------------	--

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **four-function calculator** for doing arithmetic, but you should not need one. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.

[This page intentionally left blank]

Problem 1.

[20 points]

Consider the matrix

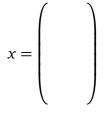
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 6 & 2 \\ 1 & 3 & 2 \end{pmatrix}.$$

a) Find a PA = LU decomposition of *A*.

[Scratch work for Problem 1]

(Problem 1, continued)

b) Solve Ax = b for b = (1, 8, 4) using your answer to **a**).



c) Compute A^{-1} . Please write the row operations you performed.

$$A^{-1} =$$

ſ

d) Solve Ax = b for an unknown vector $b = (b_1, b_2, b_3)$. Your answer will be a formula in terms of b_1, b_2, b_3 .

$$x = \left(\begin{array}{c} & \\ & \\ & \\ & \\ & \end{array} \right)$$

[Scratch work for Problem 1]

(Problem 1, continued)

e) Express A^{-1} as a product of elementary matrices. (Write *matrices*, not row operations.)

 $A^{-1} =$

f) Express *A* as a product of elementary matrices.

$$A =$$

[Scratch work for Problem 1]

Problem 2.

[15 points]

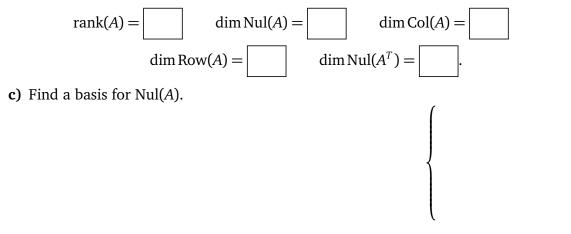
Consider the matrix equation Ax = b for

$$A = \begin{pmatrix} 1 & 3 & 0 & 2 \\ 3 & 9 & -2 & 8 \\ 2 & 6 & 2 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}.$$

a) Find the parametric vector form of the solution set of Ax = b.

$$x = \left(\begin{array}{c} \\ \\ \end{array} \right) +$$

b) Compute the following quantities:



[Scratch work for Problem 2]

d) Given that

$$A\begin{pmatrix}1\\1\\1\\-1\end{pmatrix} = \begin{pmatrix}2\\2\\8\end{pmatrix},$$

express the solution set of Ax = (2, 2, 8) as a translate of a span.

$$x = \left(\begin{array}{c} \\ \\ \end{array} \right) + \operatorname{Span} \left\{ \begin{array}{c} \\ \end{array} \right.$$

e) Find a basis for Col(*A*).

[Scratch work for Problem 2]

Problem 3.

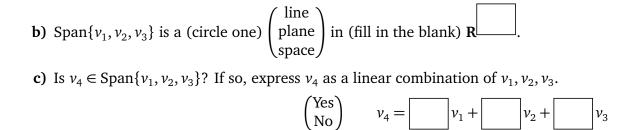
[15 points]

Consider the vectors

$$v_1 = \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} -2\\ 4\\ 0 \end{pmatrix} \qquad v_3 = \begin{pmatrix} -3\\ 1\\ -5 \end{pmatrix} \qquad v_4 = \begin{pmatrix} 1\\ -7\\ -7 \end{pmatrix}.$$

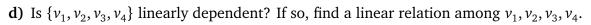
a) Find a linear relation among v_1, v_2, v_3 .

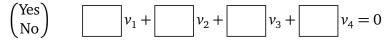
$$\begin{bmatrix} 1\\-1\\1 \end{bmatrix} + \begin{bmatrix} -2\\4\\0 \end{bmatrix} + \begin{bmatrix} -3\\1\\-5 \end{bmatrix} = 0$$



[Scratch work for Problem 3]

(Problem 3, continued)





e) dim Span $\{v_1, v_2, v_3, v_4\} =$

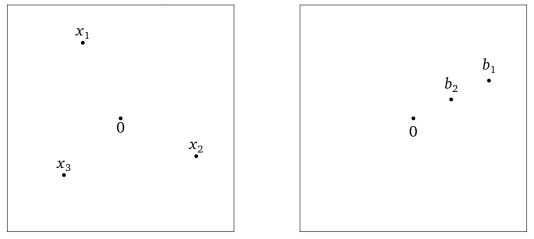
f) Which of the following sets form a basis for \mathbf{R}^3 ? Circle all that apply.

 $\{v_1, v_2\} \quad \{v_1, v_2, v_3\} \quad \{v_1, v_3, v_4\} \\ \{v_2, v_3, v_4\} \quad \{v_3, v_4\} \quad \{v_1, v_2, v_3, v_4\}$

[Scratch work for Problem 3]

Problem 4.

For a certain 2 × 2 matrix *A* and vectors $x_1, x_2, x_3 \in \mathbb{R}^2$ drawn on the left, the vectors $b_1 = Ax_1$ and $b_2 = Ax_2 = Ax_3$ are drawn on the right. (All vectors are drawn as points.)



In what follows, it is important that Ax_2 is equal to Ax_3 .

a) Draw the solution set of $Ax = b_2$ on the picture on the left.

b) Draw the solution set of $Ax = b_1$ on the picture on the left.

- **c)** Draw Nul(*A*) on the picture on the left.
- **d)** rank(*A*) =
- **e)** Draw Col(*A*) on the picture on the right.

[Scratch work for Problem 4]

Problem 5.

[20 points]

Short-answer questions: no justification is necessary.

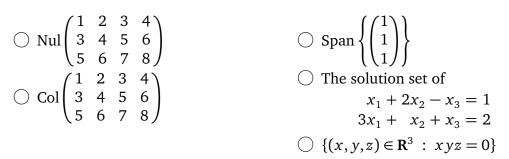
a) Consider the matrix

$$A = \begin{pmatrix} 3 & 7 & 4 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Which of the following are true about *A*? Fill in the bubbles of all that apply.

A has full row rank. *A* has full column rank. *A* has full column rank. *A* is invertible.
Nul(A) = {0}.
Col(A) = \mathbb{R}^3 .
There exists *b* ∈ \mathbb{R}^3 such that *Ax* = *b* is a point.
The columns of *A* are linearly independent.
There exists *b* ∈ \mathbb{R}^3 such that *Ax* = *b* is inconsistent.

b) Which of the following are subspaces of \mathbf{R}^3 ? Fill in the bubbles of all that apply.



c) Find a basis for the left null space of the matrix

$$A = \begin{pmatrix} 3 & 7 & 4 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

d) If *A* is a 4×5 matrix, then $\dim \operatorname{Nul}(A) + \dim \operatorname{Col}(A) = \operatorname{dim} \operatorname{Nul}(A) + \dim \operatorname{Row}(A) = \operatorname{lin}(A)$ [Scratch work for Problem 5]

Problem 6.

Find examples of the following things. If an example exists, no justification is needed; otherwise, explain why no example exists.

a) A 3 × 3 matrix A such that Col(A) = Nul(A).

b) Row-equivalent 2×2 matrices *A* and *B* with $Col(A) \neq Col(B)$.

c) A 3×2 matrix with full row rank.

d) A 2 \times 2 matrix *A* such that Ax = 0 is inconsistent.

[Scratch work for Problem 6]