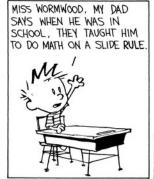
MATH 218D-1 MIDTERM EXAMINATION 1

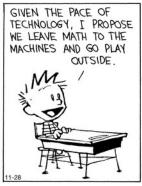
Name	Duke Email	@duke.edu

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic, but you should not need one. You may bring a 3 × 5-**inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!



HE SAYS HE HASN'T USED A
SLIDE RULE SINCE, BECAUSE
HE GOT A FIVE-BUCK
CALCULATOR THAT CAN DO
MORE FUNCTIONS THAN HE
COULD FIGURE OUT IF HIS
LIFE DEPENDED ON IT.



Problem 1. [15 points]

a) Find the *LU* decomposition of this matrix:

$$A = \begin{pmatrix} -2 & 2 & 1 \\ 4 & -1 & 1 \\ -6 & 12 & 11 \end{pmatrix}.$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \qquad U = \begin{pmatrix} -2 & 2 & 1 \\ 0 & 3 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

b) Express the matrix L that you computed above as a product of three elementary matrices.

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

c) Compute L^{-1} .

$$L^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -7 & -2 & 1 \end{pmatrix}$$

d) Explain why a computer would probably compute a PA = LU decomposition, beginning with the row swap $R_1 \longleftrightarrow R_3$.

It would choose the largest pivot (in absolute value) to minimize rounding error.

e) Given the decomposition

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & -8 & -5 \\ -1 & -5 & 2 & 0 \\ 2 & 0 & 3 & 2 \\ -1 & -3 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & 3 & 1 & 0 \\ 0 & -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & -3 & 0 & -1 \\ 0 & -2 & 2 & 1 \\ 0 & 0 & -3 & -3 \\ 0 & 0 & 0 & 2 \end{pmatrix},$$

solve the equation

$$\begin{pmatrix} 0 & 2 & -8 & -5 \\ -1 & -5 & 2 & 0 \\ 2 & 0 & 3 & 2 \\ -1 & -3 & 0 & -1 \end{pmatrix} x = \begin{pmatrix} 7 \\ -7 \\ 2 \\ -4 \end{pmatrix}.$$

$$x = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$

Problem 2.

[20 points]

a) Compute the reduced row echelon form of the matrix

$$\begin{pmatrix} 1 & 3 & 4 & 1 \\ -3 & -9 & -6 & -1 \\ 2 & 6 & 2 & 1 \end{pmatrix}.$$

Be sure to write down all row operations that you perform.

RREF:
$$\begin{pmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Now we switch matrices to avoid carry-through error. Consider the matrix *A* and its reduced row echelon form:

$$A = \begin{pmatrix} 1 & -1 & 4 & -10 & 1 \\ -3 & 3 & -1 & -3 & -1 \\ 2 & -2 & 2 & -2 & 1 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & -1 & 0 & 2 & 0 \\ 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

b) Circle all of the free variables in the system Ax = 0:

$$x_1$$
 x_2 x_3 x_4 x_5

c) Compute a basis for Nul(*A*).

basis:
$$\left\{ \begin{pmatrix} 1\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\3\\1\\0 \end{pmatrix} \right\}$$

d) Given the identity

$$A \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ -15 \\ 12 \end{pmatrix},$$

write the solution set of Ax = (10, -15, 12) as a translate of a span.

solution set:
$$\begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \\ 2 \end{pmatrix} + \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 3 \\ 1 \\ 0 \end{pmatrix} \right\}$$

e) Compute a basis for Row(*A*).

basis:
$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

basis:
$$\left\{ \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$$

g) Compute a basis for Col(A) consisting of vectors with all coordinates equal to 0 or 1.

basis:
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

h) Compute a basis for $Nul(A^T)$.

Problem 3.

[15 points]

The matrix

$$A = \begin{pmatrix} 1 & 2 & 4 \\ -1 & 1 & 5 \\ 2 & -1 & -7 \end{pmatrix} \quad \text{has null space} \quad \text{Nul}(A) = \text{Span} \left\{ \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \right\}.$$

a) Find a linear relation among the columns of *A*.

- **b)** $\operatorname{rank}(A) = \boxed{2}$
- **c)** Which of the following sets form a basis for Col(*A*)? Circle all that apply.

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ -7 \end{pmatrix} \right\}, \\
\left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ -7 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ -7 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

- **d)** Row(A) is a (circle one) point / line / plane / space in \mathbb{R}^{3} .
- e) Find a basis for $Row(A)^{\perp}$.

basis:
$$\left\{ \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \right\}$$

f) Which of the following sets form a basis for $Nul(A^T)$? Circle all that apply.

$$\left\{ \begin{pmatrix} -1\\5\\3 \end{pmatrix}, \begin{pmatrix} 2\\-3\\1 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 2\\-3\\1 \end{pmatrix} \right\}, \\
\left\{ \begin{pmatrix} -1\\5\\3 \end{pmatrix} \right\}, \quad \left\{ \begin{pmatrix} 1\\-5\\-3 \end{pmatrix} \right\}, \quad \left\{ \right\}$$

g) Find a basis for $\text{Nul}(A^T)^{\perp}$.

basis:
$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}$$

Problem 4.

[10 points]

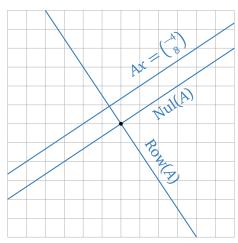
Consider the matrix $A = \begin{pmatrix} 2 & -3 \\ -4 & 6 \end{pmatrix}$.

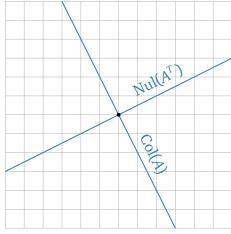
a) Compute bases for all four fundamental subspaces of *A*.

 $Col(A): \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\} \quad Row(A): \left\{ \begin{pmatrix} 2 \\ -3 \end{pmatrix} \right\}$

 $\operatorname{Nul}(A^T): \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\} \quad \operatorname{Nul}(A): \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\}$

b) Draw *and label* Row(A) and Nul(A) in the grid on the left, and Col(A) and Nul(A^T) in the grid on the right. Be precise!





c) Draw the solution set of $Ax = {\binom{-4}{8}}$ in the grid on the left.

Short-answer questions: no justification is necessary unless indicated otherwise.

a) If *A* is a 5×2 matrix with full column rank, which of the following statements must be true about *A*? Fill in the bubbles of all that apply.

- \bigcirc rank(A) = 5
- \bigcirc Col(A) is a plane in \mathbb{R}^5
- $\bigcirc \text{ Nul}(A) = \{\}$
- \bigcirc Ax = b has a unique solution for every $b \in \mathbb{R}^5$
- Ax = 0 has a unique solution
- \bigcirc Nul(A^T) is a plane in \mathbb{R}^5
- \bigcirc Row(A) = \mathbb{R}^2

b) A certain 3×3 matrix A has null space equal to Span $\{(1, 1, 1)\}$. Which of the following sets is *necessarily* equal to the solution set of Ax = b for *some* vector $b \in \mathbb{R}^3$? Fill in the bubbles of all that apply.

Span{(1,1,1)}
 {}
 {(1,1,1)}

c) Is this set a subspace?

$$V = \{(x, y, z) \in \mathbf{R}^3 : x^2 + z^2 = 0\}$$

If so, express V as the null space or the column space of a matrix. If not, explain why not.

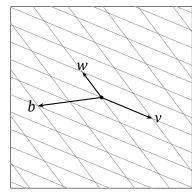
$$V = \{(x, y, z) \in \mathbb{R}^3 : x = z = 0\} = \text{Nul} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

d) A certain 2×2 matrix

$$A = \begin{pmatrix} | & | \\ v & w \\ | & | \end{pmatrix}$$

has columns v and w, pictured below. Solve the equation Ax = b, where b is the vector in the picture.

$$x = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$$



Problem 6. [20 points]

In each part, either provide an example, or explain why no example exists. (No explanation is required if an example does exist.)

a) A 3×3 matrix whose row space and null space are both planes in \mathbb{R}^3 .

Impossible: if *A* has 3 columns then $\dim \text{Row}(A) + \dim \text{Nul}(A) = 3$.

b) A nonzero 2×2 matrix whose column space is contained in its null space.

For example,
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

c) A 3×3 matrix A such that dim Col(A) = dim Nul(A).

Impossible: if *A* has 3 columns then $\dim Col(A) + \dim Nul(A) = 3$.

d) A 3×3 matrix of rank 2 whose null space is equal to its left null space.

Any symmetric matrix of rank 2 will work. For instance,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$