MATH 218D-1 PRACTICE MIDTERM EXAMINATION 2

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic, but you should not need one. You may bring a 3 × 5**-inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.

Problem 1. [20 points]

Consider the subspace V of \mathbb{R}^4 defined by the equation

$$
x_1 - x_2 + 2x_3 - 6x_4 = 0.
$$

- **a)** Compute an *orthogonal* basis for *V*.
- **b**) Compute an *orthogonal* basis for V^{\perp} .
- **c)** Compute the projection matrix P_V .

 $P_V =$ 1 42 $\sqrt{ }$ L L 41 1 −2 6 1 41 2 −6 −2 2 38 12 6 −6 12 6 λ -l -1

 $\sqrt{ }$ \int

 $\sqrt{ }$

λ

 $\sqrt{ }$

λ

 $\sqrt{ }$

1 −1 2 -6

λ

- I -1

λ

 \mathcal{L} $\overline{\mathcal{L}}$

 \int

 \mathcal{L} $\overline{\mathcal{L}}$

 \int

- I -1

L L

 $\vert \cdot$

 $\sqrt{ }$ \int

 $\sqrt{ }$

L L

 $\overline{\mathcal{L}}$

L L

 $\vert \cdot$

L L

 $\overline{\mathcal{L}}$

d) Compute the orthogonal projection of the vector $b = (1, 0, 1, -3)$ onto *V*.

 $b_V =$ 1 2 $\sqrt{ }$ L L 1 1 0 0 λ -l -1

e) The distance from $(1, 0, 1, -3)$ to *V* is $\sqrt{21/2}$ p $2 \nmid$.

Problem 2. [15 points]

Applying the Gram–Schmidt procedure to a certain list of vectors v_1, v_2, v_3 in \mathbf{R}^4 yields the vectors

$$
\begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix} = u_1 = v_1 \qquad \begin{pmatrix} 1 \\ 3 \\ 3 \\ -1 \end{pmatrix} = u_2 = v_2 + 2u_1 \qquad \begin{pmatrix} -3 \\ 1 \\ 1 \\ 3 \end{pmatrix} = u_3 = v_3 - \frac{3}{2}u_1 + \frac{1}{2}u_2.
$$

The following questions are easier if you do not compute v_2 and v_3 .

- **a**) $\frac{v_1 \cdot v_2}{v_1 \cdot v_2}$ $v_1 \cdot v_1$ $=$ -2
- **b**) What is the orthogonal projection of v_3 onto $V_2 = \text{Span}\{u_1, u_2\}$?

$$
(v_3)_{V_2} = \boxed{3/2} u_1 + \boxed{-1/2} u_2
$$

- **c**) What is the orthogonal projection of *b* = (0,5, -5, 0) onto *V* = Span $\{v_1, v_2, v_3\}$?
	- $b_V =$ 1 2 $\sqrt{ }$ L L 3 1 −1 3 λ -l -1
- **d**) Let *A* be the matrix with columns v_1 , v_2 , v_3 . The QR decomposition of *A* is

$$
\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | & | \end{pmatrix} = \frac{1}{2\sqrt{5}} \begin{pmatrix} 3 & 1 & -3 \\ 1 & 3 & 1 \\ -1 & 3 & 1 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2\sqrt{5} & -4\sqrt{5} & 3\sqrt{5} \\ 0 & 2\sqrt{5} & -\sqrt{5} \\ 0 & 0 & 2\sqrt{5} \end{pmatrix}
$$

e) The least-squares solution of $A\hat{x} = b$ (with *A* and *b* as above) is

$$
\widehat{x} = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
$$

Problem 3. [15 points]

a) Compute the characteristic polynomial of the matrix

$$
\begin{pmatrix} 2 & 3 & -6 \ -6 & -7 & 12 \ -3 & -3 & 5 \end{pmatrix}.
$$

Do not factor your answer.

$$
p(\lambda) = -\lambda^3 + 3\lambda + 2
$$

Now we switch matrices to avoid carry-through error. The matrix

$$
A = \begin{pmatrix} -7 & -18 & 30 \\ -12 & -37 & 60 \\ -9 & -27 & 44 \end{pmatrix}
$$

has characteristic polynomial $p(\lambda) = -(\lambda + 1)^2(\lambda - 2)$.

- **b)** The eigenvalues of *A* are $\lambda_1 = \boxed{-1}$ and $\lambda_2 = \boxed{2}$.
- **c)** Compute a basis for each eigenspace. Scale your eigenvectors to have integer (wholenumber) entries.

$$
\lambda_1 \colon \left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} \right\} \qquad \lambda_2 \colon \left\{ \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix} \right\}
$$

d) Solve the difference equation

$$
v_{k+1} = Av_k \qquad v_0 = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}
$$

.

$$
\mathbf{v}_{k} = \begin{pmatrix} -2(-1)^{k} + 2 \cdot 2^{k} \\ -(-1)^{k} + 4 \cdot 2^{k} \\ -(-1)^{k} + 3 \cdot 2^{k} \end{pmatrix}
$$

Problem 4. [10 points]

Certain vectors v_1 and v_2 are drawn below.

Draw and label:

a)
$$
\frac{v_2 \cdot v_1}{v_1 \cdot v_1} v_1
$$
 b) $v_2 - \frac{v_2 \cdot v_1}{v_1 \cdot v_1} v_1$

c) The orthogonal complement of $V = \text{Span}\{v_1\}$.

Problem 5. [20 points]

a) Let *A* be an $m \times n$ matrix and let $b \in \mathbb{R}^n$ be a vector. Explain why *b* can be expressed as a sum of a vector in Row(*A*) and a vector in Nul(*A*).

Let *V* = Row(*A*). Then V^{\perp} = Nul(*A*), and $b_V + b_{V^{\perp}} = b$.

b) Performing the following sequence of row operations on a matrix *A*results in a matrix *U* in reduced row echelon form:

$$
A \quad \xrightarrow{R_1 + 2R_2, R_2 \times 3, R_1 - R_3, R_2 \longleftrightarrow R_3} U = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
$$

What is det(*A*)?

 $det(A) = 0$

c) Consider the subspace

$$
V = \text{Span}\left\{ \begin{pmatrix} 1 \\ 7 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 3 \\ -1 \end{pmatrix} \right\}
$$

and the projection matrix P_V . There exists an invertible matrix *C* such that $P_V =$ *C DC*[−]¹ , where *D* is the diagonal matrix

$$
D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

- **d)** Suppose that *λ* is an eigenvalue of *A*. Which of the following statements can you conclude? Fill in the circles of all that apply.
	- \bigcirc *A*− λ *I*_{*n*} has a free variable.
	- There exists a vector $v \in \mathbb{R}^n$ such that $Av = \lambda v$.

	a² is an eigenvalue of A^2
	- \bigcirc λ^2 is an eigenvalue of A^2 .
 \bigcirc $A = CDC^{-1}$ for an invertil
	- \bigcirc *A* = *CDC*^{−1} for an invertible matrix *C* and a diagonal matrix *D*.
	- 0 is an eigenvalue of $A \lambda I_n$.

	a **a** is a zero of the characterist
	- *^λ* is a zero of the characteristic polynomial of *^A*.

Problem 6. [20 points]

Give examples of matrices with each of the following properties. If no such matrix exists, explain why. *All matrices in this problem have real entries.*

a) A diagonalizable 2 × 2 matrix with characteristic polynomial $p(\lambda) = \lambda^2 - \lambda$. There are many answers. One is

$$
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

- **b**) An invertible 2 × 2 matrix with characteristic polynomial $p(\lambda) = \lambda^2 \lambda$. This is not possible: $det(A) = p(0) = 0$.
- **c)** A matrix *A* such that $b_V = b$, where $b = (1, 2, 1)$ and $V = \text{Col}(A)$. Any matrix with *b* as a column will work.
- **d**) A 2 × 2 symmetric matrix *A* such that $Col(A) = Nul(A)$. This is not possible: if *A* is symmetric then $Col(A) = Row(A) = Null(A)^{\perp}$.
- **e)** A 2 × 2 matrix with no (real) eigenvectors. There are many answers. One is

$$
\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
$$