MATH 218D-1 PRACTICE MIDTERM EXAMINATION 2

Name	Duke Email	@duke.edu

Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic, but you should not need one. You may bring a 3 × 5-**inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.

Problem 1.

[20 points]

Consider the subspace V of \mathbb{R}^4 defined by the equation

$$x_1 - x_2 + 2x_3 - 6x_4 = 0.$$

a) Compute an orthogonal basis for V.

$$\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2\\1 \end{pmatrix} \right\}$$

b) Compute an *orthogonal* basis for V^{\perp} .

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \\ -6 \end{pmatrix} \right\}$$

c) Compute the projection matrix P_V .

$$P_V = \frac{1}{42} \begin{pmatrix} 41 & 1 & -2 & 6 \\ 1 & 41 & 2 & -6 \\ -2 & 2 & 38 & 12 \\ 6 & -6 & 12 & 6 \end{pmatrix}$$

d) Compute the orthogonal projection of the vector b = (1, 0, 1, -3) onto V.

$$b_V = \frac{1}{2} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$

e) The distance from (1,0,1,-3) to V is $\sqrt{21/\sqrt{2}}$.

Problem 2. [15 points]

Applying the Gram–Schmidt procedure to a certain list of vectors v_1, v_2, v_3 in \mathbb{R}^4 yields the vectors

$$\begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix} = u_1 = v_1 \qquad \begin{pmatrix} 1 \\ 3 \\ 3 \\ -1 \end{pmatrix} = u_2 = v_2 + 2u_1 \qquad \begin{pmatrix} -3 \\ 1 \\ 1 \\ 3 \end{pmatrix} = u_3 = v_3 - \frac{3}{2}u_1 + \frac{1}{2}u_2.$$

The following questions are easier if you do not compute v_2 and v_3 .

$$\mathbf{a)} \ \frac{\nu_1 \cdot \nu_2}{\nu_1 \cdot \nu_1} = \boxed{-2}$$

b) What is the orthogonal projection of v_3 onto $V_2 = \text{Span}\{u_1, u_2\}$?

$$(v_3)_{V_2} = \boxed{3/2} u_1 + \boxed{-1/2} u_2$$

c) What is the orthogonal projection of b = (0, 5, -5, 0) onto $V = \text{Span}\{v_1, v_2, v_3\}$?

$$b_V = \frac{1}{2} \begin{pmatrix} 3\\1\\-1\\3 \end{pmatrix}$$

d) Let *A* be the matrix with columns v_1, v_2, v_3 . The QR decomposition of *A* is

$$\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} = \frac{1}{2\sqrt{5}} \begin{pmatrix} 3 & 1 & -3 \\ 1 & 3 & 1 \\ -1 & 3 & 1 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2\sqrt{5} & -4\sqrt{5} & 3\sqrt{5} \\ 0 & 2\sqrt{5} & -\sqrt{5} \\ 0 & 0 & 2\sqrt{5} \end{pmatrix}$$

e) The least-squares solution of $A\hat{x} = b$ (with A and b as above) is

$$\widehat{x} = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Problem 3.

[15 points]

a) Compute the characteristic polynomial of the matrix

$$\begin{pmatrix} 2 & 3 & -6 \\ -6 & -7 & 12 \\ -3 & -3 & 5 \end{pmatrix}.$$

Do not factor your answer.

$$p(\lambda) = -\lambda^3 + 3\lambda + 2$$

Now we switch matrices to avoid carry-through error. The matrix

$$A = \begin{pmatrix} -7 & -18 & 30 \\ -12 & -37 & 60 \\ -9 & -27 & 44 \end{pmatrix}$$

has characteristic polynomial $p(\lambda) = -(\lambda + 1)^2(\lambda - 2)$.

- **b)** The eigenvalues of *A* are $\lambda_1 = \boxed{-1}$ and $\lambda_2 = \boxed{2}$.
- **c)** Compute a basis for each eigenspace. Scale your eigenvectors to have integer (wholenumber) entries.

$$\lambda_1: \left\{ \begin{pmatrix} -3\\1\\0 \end{pmatrix}, \begin{pmatrix} 5\\0\\1 \end{pmatrix} \right\} \qquad \lambda_2: \left\{ \begin{pmatrix} 2\\4\\3 \end{pmatrix} \right\}$$

d) Solve the difference equation

$$v_{k+1} = Av_k \qquad v_0 = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}.$$

$$\nu_k = \begin{pmatrix} -2(-1)^k + 2 \cdot 2^k \\ -(-1)^k + 4 \cdot 2^k \\ -(-1)^k + 3 \cdot 2^k \end{pmatrix}$$

Problem 4.

[10 points]

Certain vectors v_1 and v_2 are drawn below.

Draw and label:

$$\mathbf{a)} \; \frac{\nu_2 \cdot \nu_1}{\nu_1 \cdot \nu_1} \nu_1$$

a)
$$\frac{v_2 \cdot v_1}{v_1 \cdot v_1} v_1$$
 b) $v_2 - \frac{v_2 \cdot v_1}{v_1 \cdot v_1} v_1$

c) The orthogonal complement of $V = \text{Span}\{v_1\}$.

a) Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^n$ be a vector. Explain why b can be expressed as a sum of a vector in Row(A) and a vector in Nul(A).

Let
$$V = \text{Row}(A)$$
. Then $V^{\perp} = \text{Nul}(A)$, and $b_V + b_{V^{\perp}} = b$.

b) Performing the following sequence of row operations on a matrix *A* results in a matrix *U* in reduced row echelon form:

What is det(A)?

$$det(A) = 0$$

c) Consider the subspace

$$V = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 7 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix} \right\}$$

and the projection matrix P_V . There exists an invertible matrix C such that $P_V = CDC^{-1}$, where D is the diagonal matrix

- **d)** Suppose that λ is an eigenvalue of A. Which of the following statements can you conclude? Fill in the circles of all that apply.
 - $A \lambda I_n$ has a free variable.
 - There exists a vector $v \in \mathbf{R}^n$ such that $Av = \lambda v$.
 - λ^2 is an eigenvalue of A^2 .
 - \bigcirc $A = CDC^{-1}$ for an invertible matrix C and a diagonal matrix D.
 - 0 is an eigenvalue of $A \lambda I_n$.
 - \bullet λ is a zero of the characteristic polynomial of A.

Problem 6. [20 points]

Give examples of matrices with each of the following properties. If no such matrix exists, explain why. *All matrices in this problem have real entries*.

a) A diagonalizable 2×2 matrix with characteristic polynomial $p(\lambda) = \lambda^2 - \lambda$. There are many answers. One is

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

- **b)** An invertible 2×2 matrix with characteristic polynomial $p(\lambda) = \lambda^2 \lambda$. This is not possible: det(A) = p(0) = 0.
- **c)** A matrix *A* such that $b_V = b$, where b = (1, 2, 1) and V = Col(A). Any matrix with b as a column will work.
- **d)** A 2 × 2 symmetric matrix *A* such that Col(A) = Nul(A). This is not possible: if *A* is symmetric then $Col(A) = Row(A) = Nul(A)^{\perp}$.
- e) A 2×2 matrix with no (real) eigenvectors. There are many answers. One is

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.