MATH 218D-1 MIDTERM EXAMINATION 2

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic, but you should not need one. You may bring a 3 × 5**-inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

Problem 1. [18 points]

Consider the matrix

$$
A = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ -2 & 1 & 1 & 0 & 1 \end{pmatrix}.
$$

a) The row space of *A* is a (circle one) $\begin{pmatrix} line \ plane \ plane \end{pmatrix}$ in (fill in the blank) \mathbb{R}

The row space is spanned by the two rows of *A*. The rows are not collinear, so they span a plane, and each row has 5 entries, so they are vectors in **R** 5 .

b) Compute the orthogonal projection of $b = (3, 0, 0, 0, -1)$ onto Row(*A*).

 $b_{\text{Row}(A)} =$ $\sqrt{ }$ $\overline{}$ L 2 −1 −1 0 −1 λ -1 .

 $b_{\mathrm{Nul}(A)} =$

 $\sqrt{ }$

λ

 -1 .

 \mathbf{I} L

.

The easiest way to do this is by solving the normal equation $AA^T x = Ab$. (Note that $Row(A) = Col(A^T)$.)

c) Compute the orthogonal projection of $b = (3, 0, 0, 0, -1)$ onto Nul(*A*).

0 Since Nul(*A*) = $Row(A)^{\perp}$, if your answers to **b**) and **c**) sum to *b*, you'll get full credit. Now consider the matrix

$$
B = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ -2 & 2 & 0 & -4 & -2 \end{pmatrix}.
$$

d) The row space of *B* is a (circle one) $\begin{pmatrix} line \\ plane \\ space \end{pmatrix}$ in (fill in the blank) $\mathbb{R}^{\boxed{5}}$.

This is exactly the same as **a)**, except in this case, the rows *are* collinear, so they span a line.

e) Compute the orthogonal projection of $b = (2, 0, 0, 3, -1)$ onto Row(*B*).

 $b_{\text{Row}(B)} =$ $\sqrt{ }$ $\overline{}$ L 1 −1 0 2 1 λ -1 .

Use the formula for projection onto a line: $b_{Row(B)} = \frac{b \cdot v}{v \cdot v}$ *v*·*v v*. You can take *v* to be either row of *B*.

f) Compute the projection matrix P_V for $V = \text{Nul}(B)$.

$$
P_V = \frac{1}{7} \begin{pmatrix} 6 & 1 & 0 & -2 & -1 \\ 1 & 6 & 0 & 2 & 1 \\ 0 & 0 & 7 & 0 & 0 \\ -2 & 2 & 0 & 3 & -2 \\ -1 & 1 & 0 & -2 & 6 \end{pmatrix}
$$

Since V^{\perp} = Row(*B*) is a line, it's easy to compute $P_{V^{\perp}} = \frac{\nu v^T}{\nu \cdot \nu}$ $\frac{\partial v}{\partial v}$; then $P_V = I_5 - P_{V^{\perp}}$. **g)** Find a basis for $\text{Nul}(P_V)$.

> $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\sqrt{ }$ \mathbf{I} L 1 −1 0 2 1 λ $\begin{array}{c} \hline \end{array}$ -1 \mathcal{L} $\overline{\mathcal{L}}$ \int

.

.

We have $\text{Nul}(P_V) = V^\perp = \text{Nul}(B)^\perp = \text{Row}(B)$, so you just have to write a multiple of either row of *B*.

Problem 2. [17 points]

Consider the matrix

$$
A = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 4 & -1 \\ 1 & 2 & 5 \\ 1 & 2 & 3 \end{pmatrix}.
$$

Applying the Gram–Schmidt procedure to its columns gives:

$$
\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 2 \\ 2 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 5 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}.
$$

a) Compute the *QR* decomposition of *A*.

$$
Q = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{pmatrix} \quad R = \begin{pmatrix} 2 & 6 & 4 \\ 0 & 2 & -4 \\ 0 & 0 & 2 \end{pmatrix}
$$

(Check your work! Does $A = QR$? Does Q have orthonormal columns? The rest of the problem will be much easier if so.)

b) Find the least-squares solution of $Ax = (2, 0, -4, 2)$.

 $\widehat{x} =$ \int 5 −1 −1 !

It's easiest to solve $R\widehat{x} = Q^T b$ by back-substitution.

c) Compute the orthogonal projection of $b = (2, 0, -4, 2)$ onto $V = \text{Col}(A)$.

 $b_V =$ $\sqrt{ }$ L L 0 2 −2 0 λ $\| \cdot \|$

 $\sqrt{ }$

1 −1 −1

λ

 $\| \cdot \|$

L L

 $\nu =$

If you multiply *A* by your answer to **b)** you get full credit.

d) Find a nonzero vector *v* in Nul(A^T).

1 We have $\text{Nul}(A^T) = \text{Col}(A)^{\perp}$, so you just have to subtract your answer to **c**) from *b*. **e)** Compute the projection matrix P_V onto $V = \text{Col}(A)$. $P_V =$ 1 4 $\sqrt{ }$ L L 3 1 1 −1 1 3 −1 1 1 −1 3 1 −1 1 1 3 λ -l -1

It's probably eaisest to compute $P_V = QQ^T$ since you already know Q .

f) Find an eigenbasis for P_V .

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\sqrt{ }$ L L 1 1 1 1 λ $\vert \cdot$ $\sqrt{ }$ L L 2 2 1 1 λ $\vert \cdot$ $\sqrt{ }$ L L 1 −1 5 3 λ $\vert \cdot$ $\sqrt{ }$ L L 1 −1 −1 1 λ - I -1 \mathcal{L} $\overline{\mathcal{L}}$ \int

The 1-eigenspace of P_V is $V = \text{Col}(A)$, and the columns of A (or of Q) form a basis for Col(*A*). This gives you 3 basis vectors, so you need one more. The 0-eigenspace is V^{\perp} = Nul(A^T), and you found a basis for that in **d**). Combining these gives an eigenbasis.

Problem 3. [15 points]

The matrix

$$
A = \begin{pmatrix} 61/2 & 12 & -7/2 \\ -51 & -20 & 6 \\ 75 & 30 & -8 \end{pmatrix}
$$

has eigenvectors

$$
w_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \quad w_2 = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} \quad w_3 = \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix}.
$$

a) Find the eigenvalue associated to each of these eigenvectors.

$$
\lambda_1 = \boxed{-\frac{1}{2}} \qquad \lambda_2 = \boxed{1} \qquad \lambda_3 = \boxed{2}
$$

Just compute Aw_i and see what scalar you have to multiply w_i by to get Aw_i . In fact, since you're told that w_1, w_2, w_3 are eigenvectors, you really just need to compute the first coordinate of *Awⁱ* . For instance,

$$
Aw_1 = \begin{pmatrix} -1/2 \\ ? \\ ? \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix},
$$

so $\lambda_1 = -1/2$.

b) Compute the characteristic polynomial of *A*. (You need not expand a product of polynomials.)

 $p(\lambda) = -(\lambda + \frac{1}{2})$ $\frac{1}{2}$ $)(\lambda - 1)(\lambda - 2)$ Its linear factors are $\lambda - \lambda_1$, $\lambda - \lambda_2$, $\lambda - \lambda_3$, but its λ^3 -coefficient is $\bar{(-1)^3} = -1$.

c) Find an invertible matrix *C* and a diagonal matrix *D* such that $A = CDC^{-1}$.

$$
C = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -1 & 3 \\ 2 & 5 & -6 \end{pmatrix} \quad D = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}
$$

The columns of *C* are w_1, w_2, w_3 and the diagonal entries of *D* are your answers to **a)**.

d) If $v = (-1, 3, 2)$, compute $A^{100}v$. (You can write your answer in terms of w_1, w_2, w_3 .)

 $A^{100}v = -(-\frac{1}{2})$ $(\frac{1}{2})^{100}w_1 + 2w_2 + 2^{100}w_3$ First you have to expand in the eigenbasis: you solve $v = x_1w_1 + x_2w_2 + x_3w_3$ to get $x_1 = -1, x_2 = 2, x_3 = 1$ so that $v = -w_1 + 2w_2 + w_3$. Then multiply by A^{100} .

e) For which vectors *u* does $||A^k u||$ *not* approach ∞ as $k \to \infty$? When you expand $u = x_1w_1 + x_2w_2 + x_3w_3$ in the eigenbasis, you get

$$
A^n u = \left(-\frac{1}{2}\right)^n x_1 w_1 + x_2 w_2 + 2^{100} x_3 w_3.
$$

If $x_3 = 0$ then this approaches x_2w_2 ; otherwise it becomes arbitrarily long. So the answer is "all $u \in \text{Span}\{w_1, w_2\}$ ".

Problem 4. [10 points]

A certain 2×2 matrix *A* has eigenvalues 0 and −1, with corresponding eigenspaces drawn below.

a) Draw and label *Ax* and *Ay*.

Write *x* as the sum of the red vector and the green vector. When you multiply by *A*, the green vector goes to 0 (it's in the null space), and the red vector gets negated. Likewise for *y*.

b) Draw and label Nul(*A*) and Row(*A*). (The eigenspaces are reproduced in gray.)

The null space is the 0-eigenspace. The row space is its orthogonal complement.

Problem 5. [20 points]

 $k = 16$

Short-answer questions: no explanation is needed unless indicated otherwise.

a) Compute the area of the parallelogram. (Grid marks are one unit apart.)

b) For which value(s) of *k*, if any, is the following matrix not invertible?

Compute det(*A*) by expanding cofactors. It helps to do the row operation R_3 –= $2R_1$ first. $A =$ $\sqrt{ }$ \mathbf{I} \mathbf{I} 1 0 3 2 0 1 *k* 4 2 1 −1 2 0 3 2 0 λ \mathbf{I} \mathbf{I}

c) Suppose that *A* is an $n \times n$ matrix with characteristic polynomial

$$
p(\lambda) = \lambda(\lambda - 1)(\lambda - 2)^2
$$

Which of the following can you determine from this information?

- The number *ⁿ*. The trace of *^A*.
- The determinant of *^A*.

The eigenvalues of *^A*.

.

- Whether *^A* is invertible.
- \bigcirc Whether *A* is diagonalizable.

The number *n* is the degree of $p(\lambda)$; Tr(*A*) is the λ^2 -coefficient; det(*A*) is the constant coefficient; the eigenvalues are the roots; *A* is invertible if $det(A) \neq 0$. You don't know if *A* is diagonalizable because GM(2) could be 1 or 2.

d) Suppose that *v* is a 3-eigenvector of *A*. Briefly explain why $v \in Col(A)$.

If $Av = 3v$ then $v = A(\frac{1}{3})$ $rac{1}{3}\nu$).

Problem 6. [20 points]

In each part, either provide an example, or explain why no example exists. (No explanation is required if an example does exist.)

a) A 2 × 2 *non-diagonalizable* matrix with eigenvalues 1 and −1.

Impossible: a 2×2 matrix with two eigenvalues is diagonalizable.

b) A 2 \times 2 matrix whose 1-eigenspace is the line $x + 2y = 0$ and whose 2-eigenspace is the line $x + 3y = 0$.

$$
CDC^{-1} \quad \text{for} \quad C = \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}
$$

c) A 3 \times 2 matrix *A* and a vector *b* such that $Ax = b$ does not have a least-squares solution.

Impossible: $Ax = b$ always has a least-squares solution.

d) A 2 × 2 matrix that is *orthogonal* but has no zero entries.

$$
\begin{pmatrix}\n\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta\n\end{pmatrix}
$$

for most values of *θ*.