
MATH 218D-1
MIDTERM EXAMINATION 2

Name Duke Email @duke.edu

Please read all instructions carefully before beginning.

• Do not open this test booklet until you are directed to do so.

• You have 75 minutes to complete this exam.

• If you finish early, go back and check your work.

• The graders will only see the work on the printed pages (front and back). You may
use other scratch paper, but the graders will not see anything written there.

• You may use a simple calculator for doing arithmetic, but you should not need one.
You may bring a 3 × 5-inch note card covered with anything you want. All other
materials and aids are strictly prohibited.

• For full credit you must show your work so that your reasoning is clear, unless oth-
erwise indicated.

• Do not spend too much time on any one problem. Read them all through first and
attack them in an order that allows you to make the most progress.

• Good luck!



Problem 1. [18 points]

Consider the matrix

A=
�

1 −1 0 2 1
−2 1 1 0 1

�

.

a) The row space of A is a (circle one)

 

line
plane
space

!

in (fill in the blank) R
5

.

The row space is spanned by the two rows of A. The rows are not collinear, so they
span a plane, and each row has 5 entries, so they are vectors in R5.

b) Compute the orthogonal projection of b = (3, 0,0, 0,−1) onto Row(A).

bRow(A) =











2
−1
−1

0
−1











.

The easiest way to do this is by solving the normal equation AAT x = Ab. (Note that
Row(A) = Col(AT ).)

c) Compute the orthogonal projection of b = (3,0, 0,0,−1) onto Nul(A).

bNul(A) =











1
1
1
0
0











.

Since Nul(A) = Row(A)⊥, if your answers to b) and c) sum to b, you’ll get full credit.

Now consider the matrix

B =
�

1 −1 0 2 1
−2 2 0 −4 −2

�

.

d) The row space of B is a (circle one)

 

line
plane
space

!

in (fill in the blank) R
5

.

This is exactly the same as a), except in this case, the rows are collinear, so they span
a line.

e) Compute the orthogonal projection of b = (2,0, 0,3,−1) onto Row(B).

bRow(B) =











1
−1

0
2
1











.

Use the formula for projection onto a line: bRow(B) =
b·v
v·v v. You can take v to be either

row of B.



f) Compute the projection matrix PV for V = Nul(B).

PV =
1
7











6 1 0 −2 −1
1 6 0 2 1
0 0 7 0 0
−2 2 0 3 −2
−1 1 0 −2 6











.

Since V⊥ = Row(B) is a line, it’s easy to compute PV⊥ =
vvT

v·v ; then PV = I5 − PV⊥ .

g) Find a basis for Nul(PV ).




























1
−1

0
2
1





























.

We have Nul(PV ) = V⊥ = Nul(B)⊥ = Row(B), so you just have to write a multiple of
either row of B.



Problem 2. [17 points]

Consider the matrix

A=







1 4 1
1 4 −1
1 2 5
1 2 3






.

Applying the Gram–Schmidt procedure to its
columns gives:







1
1
1
1






=







1
1
1
1













1
1
−1
−1






=







4
4
2
2






− 3







1
1
1
1













1
−1

1
−1






=







1
−1
5
3






− 2







1
1
1
1






+ 2







1
1
−1
−1






.

a) Compute the QR decomposition of A.

Q =
1
2







1 1 1
1 1 −1
1 −1 1
1 −1 −1






R=

 

2 6 4
0 2 −4
0 0 2

!

(Check your work! Does A = QR? Does Q have orthonormal columns? The rest of
the problem will be much easier if so.)

b) Find the least-squares solution of Ax = (2,0,−4, 2).

bx =

 

5
−1
−1

!

It’s easiest to solve Rbx =QT b by back-substitution.

c) Compute the orthogonal projection of b = (2,0,−4,2) onto V = Col(A).

bV =







0
2
−2

0






.

If you multiply A by your answer to b) you get full credit.

d) Find a nonzero vector v in Nul(AT ).

v =







1
−1
−1

1






.

We have Nul(AT ) = Col(A)⊥, so you just have to subtract your answer to c) from b.



e) Compute the projection matrix PV onto V = Col(A). PV =
1
4







3 1 1 −1
1 3 −1 1
1 −1 3 1
−1 1 1 3







It’s probably eaisest to compute PV =QQT since you already know Q.

f) Find an eigenbasis for PV .

















1
1
1
1






,







2
2
1
1






,







1
−1

5
3






,







1
−1
−1

1

















The 1-eigenspace of PV is V = Col(A), and the columns of A (or of Q) form a basis
for Col(A). This gives you 3 basis vectors, so you need one more. The 0-eigenspace
is V⊥ = Nul(AT ), and you found a basis for that in d). Combining these gives an
eigenbasis.



Problem 3. [15 points]

The matrix

A=

 

61/2 12 −7/2
−51 −20 6

75 30 −8

!

has eigenvectors

w1 =

 

1
−2

2

!

w2 =

 

1
−1

5

!

w3 =

 −2
3
−6

!

.

a) Find the eigenvalue associated to each of these eigenvectors.

λ1 = −
1
2 λ2 = 1 λ3 = 2

Just compute Awi and see what scalar you have to multiply wi by to get Awi. In fact,
since you’re told that w1, w2, w3 are eigenvectors, you really just need to compute
the first coordinate of Awi. For instance,

Aw1 =

 −1/2
?
?

!

= λ1

 

1
−2
2

!

,

so λ1 = −1/2.

b) Compute the characteristic polynomial of A. (You need not expand a product of
polynomials.)

p(λ) = −(λ+ 1
2)(λ− 1)(λ− 2)

Its linear factors are λ−λ1, λ−λ2, λ−λ3, but its λ3-coefficient is (−1)3 = −1.

c) Find an invertible matrix C and a diagonal matrix D such that A= C DC−1.

C =

 

1 1 −2
−2 −1 3

2 5 −6

!

D =

 

1/2 0 0
0 1 0
0 0 2

!

The columns of C are w1, w2, w3 and the diagonal entries of D are your answers
to a).

d) If v = (−1,3, 2), compute A100v. (You can write your answer in terms of w1, w2, w3.)

A100v = −(−1
2)

100w1 + 2w2 + 2100w3
First you have to expand in the eigenbasis: you solve v = x1w1+ x2w2+ x3w3 to get
x1 = −1, x2 = 2, x3 = 1 so that v = −w1 + 2w2 +w3. Then multiply by A100.

e) For which vectors u does ∥Aku∥ not approach∞ as k→∞?
When you expand u= x1w1 + x2w2 + x3w3 in the eigenbasis, you get

Anu=
�

−
1
2

�n

x1w1 + x2w2 + 2100 x3w3.

If x3 = 0 then this approaches x2w2; otherwise it becomes arbitrarily long. So the
answer is “all u ∈ Span{w1, w2}”.



Problem 4. [10 points]

A certain 2×2 matrix A has eigenvalues 0 and−1, with corresponding eigenspaces drawn
below.

a) Draw and label Ax and Ay .

0-eigenspace

(−1)-eigenspace

x

y
Ax

Ay

Write x as the sum of the red vector and the green vector. When you multiply by A,
the green vector goes to 0 (it’s in the null space), and the red vector gets negated.
Likewise for y .

b) Draw and label Nul(A) and Row(A). (The eigenspaces are reproduced in gray.)

Nul(A)

Ro
w
(A
)

The null space is the 0-eigenspace. The row space is its orthogonal complement.



Problem 5. [20 points]

Short-answer questions: no explanation is needed unless indicated otherwise.

a) Compute the area of the parallelogram. (Grid marks are one unit apart.)

This is the paralellogram determined by the vectors
�−1

3

�

and
�4

2

�

(in green), so the area is
�

�det
�

−1 3
4 2

��

� .

area= 14

b) For which value(s) of k, if any, is the following matrix not invertible?

Compute det(A) by expanding cofactors. It helps to do
the row operation R3 −= 2R1 first.

A=







1 0 3 2
0 1 k 4
2 1 −1 2
0 3 2 0







k = 16

c) Suppose that A is an n× n matrix with characteristic polynomial

p(λ) = λ(λ− 1)(λ− 2)2.

Which of the following can you determine from this information?

 The number n.
 The trace of A.
 The determinant of A.

 The eigenvalues of A.
 Whether A is invertible.
# Whether A is diagonalizable.

The number n is the degree of p(λ); Tr(A) is the λ2-coefficient; det(A) is the constant
coefficient; the eigenvalues are the roots; A is invertible if det(A) ̸= 0. You don’t know
if A is diagonalizable because GM(2) could be 1 or 2.

d) Suppose that v is a 3-eigenvector of A. Briefly explain why v ∈ Col(A).

If Av = 3v then v = A(1
3 v).



Problem 6. [20 points]

In each part, either provide an example, or explain why no example exists. (No explana-
tion is required if an example does exist.)

a) A 2× 2 non-diagonalizable matrix with eigenvalues 1 and −1.

Impossible: a 2× 2 matrix with two eigenvalues is diagonalizable.

b) A 2×2 matrix whose 1-eigenspace is the line x +2y = 0 and whose 2-eigenspace is
the line x + 3y = 0.

C DC−1 for C =
�

−2 −3
1 1

�

D =
�

1 0
0 2

�

c) A 3 × 2 matrix A and a vector b such that Ax = b does not have a least-squares
solution.

Impossible: Ax = b always has a least-squares solution.

d) A 2× 2 matrix that is orthogonal but has no zero entries.
�

cosθ − sinθ
sinθ cosθ

�

for most values of θ .


