MATH 218D-1 MIDTERM EXAMINATION 2

Name	Duke Email	@duke.edu
itume	Duke Linun	Guunorouu

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic, but you should not need one. You may bring a 3 × 5-**inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

Problem 1.

[18 points]

Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ -2 & 1 & 1 & 0 & 1 \end{pmatrix}.$$

a) The row space of *A* is a (circle one) $\begin{pmatrix} \text{line} \\ \text{plane} \\ \text{space} \end{pmatrix}$ in (fill in the blank) **R**

(space) The row space is spanned by the two rows of *A*. The rows are not collinear, so they span a plane, and each row has 5 entries, so they are vectors in \mathbb{R}^5 .

b) Compute the orthogonal projection of b = (3, 0, 0, 0, -1) onto Row(*A*).

 $b_{\text{Row}(A)} = \begin{pmatrix} 2\\ -1\\ -1\\ 0\\ -1 \end{pmatrix}.$

The easiest way to do this is by solving the normal equation $AA^T x = Ab$. (Note that Row(A) = Col(A^T).)

c) Compute the orthogonal projection of b = (3, 0, 0, 0, -1) onto Nul(*A*).

 $b_{\text{Nul}(A)} = \begin{pmatrix} 1\\1\\1\\0\\0 \end{pmatrix}.$ Since Nul(A) = Row(A)[⊥], if your answers to **b**) and **c**) sum to b, you'll get full credit.

Now consider the matrix

$$B = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ -2 & 2 & 0 & -4 & -2 \end{pmatrix}.$$

d) The row space of *B* is a (circle one) $\begin{pmatrix} \text{line} \\ \text{plane} \\ \text{space} \end{pmatrix}$ in (fill in the blank) \mathbf{R}^{5} .

This is exactly the same as **a**), except in this case, the rows *are* collinear, so they span a line.

e) Compute the orthogonal projection of b = (2, 0, 0, 3, -1) onto Row(*B*).

 $b_{\operatorname{Row}(B)} = \begin{pmatrix} 1\\ -1\\ 0\\ 2\\ 1 \end{pmatrix}.$

Use the formula for projection onto a line: $b_{\text{Row}(B)} = \frac{b \cdot v}{v \cdot v} v$. You can take v to be either row of B.

f) Compute the projection matrix P_V for V = Nul(B).

$$P_V = \frac{1}{7} \begin{pmatrix} 6 & 1 & 0 & -2 & -1 \\ 1 & 6 & 0 & 2 & 1 \\ 0 & 0 & 7 & 0 & 0 \\ -2 & 2 & 0 & 3 & -2 \\ -1 & 1 & 0 & -2 & 6 \end{pmatrix}$$

Since $V^{\perp} = \text{Row}(B)$ is a line, it's easy to compute $P_{V^{\perp}} = \frac{vv^T}{v\cdot v}$; then $P_V = I_5 - P_{V^{\perp}}$. **g)** Find a basis for Nul(P_V).

 $\left\{ \begin{pmatrix} 1\\ -1\\ 0\\ 2\\ 1 \end{pmatrix} \right\}.$

We have $\operatorname{Nul}(P_V) = V^{\perp} = \operatorname{Nul}(B)^{\perp} = \operatorname{Row}(B)$, so you just have to write a multiple of either row of *B*.

Problem 2.

[17 points]

Consider the matrix

$$A = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 4 & -1 \\ 1 & 2 & 5 \\ 1 & 2 & 3 \end{pmatrix}$$

Applying the Gram–Schmidt procedure to its columns gives:

$$\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}$$

$$\begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} = \begin{pmatrix} 4\\4\\2\\2 \end{pmatrix} - 3 \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}$$

$$\begin{pmatrix} 1\\-1\\1\\-1\\-1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\5\\3 \end{pmatrix} - 2 \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} + 2 \begin{pmatrix} 1\\1\\-1\\-1\\-1 \end{pmatrix}.$$

a) Compute the *QR* decomposition of *A*.

(Check your work! Does A = QR? Does Q have orthonormal columns? The rest of the problem will be much easier if so.)

b) Find the least-squares solution of Ax = (2, 0, -4, 2).

 $\widehat{x} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix}$

It's easiest to solve $R\hat{x} = Q^T b$ by back-substitution.

c) Compute the orthogonal projection of b = (2, 0, -4, 2) onto V = Col(A).

 $b_V = \begin{pmatrix} 0\\ 2\\ -2\\ 0 \end{pmatrix}.$

If you multiply *A* by your answer to **b**) you get full credit.

d) Find a nonzero vector v in Nul(A^T).

 $\nu = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}.$ We have Nul(A^T) = Col(A)^{\perp}, so you just have to subtract your answer to **c**) from *b*. e) Compute the projection matrix P_V onto V = Col(A). $P_V = \frac{1}{4} \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}$

It's probably easiest to compute $P_V = QQ^T$ since you already know Q.

f) Find an eigenbasis for P_V .

 $\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\5\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix} \right\}$

The 1-eigenspace of P_V is V = Col(A), and the columns of A (or of Q) form a basis for Col(A). This gives you 3 basis vectors, so you need one more. The 0-eigenspace is $V^{\perp} = \text{Nul}(A^T)$, and you found a basis for that in **d**). Combining these gives an eigenbasis.

Problem 3.

[15 points]

The matrix

$$A = \begin{pmatrix} 61/2 & 12 & -7/2 \\ -51 & -20 & 6 \\ 75 & 30 & -8 \end{pmatrix}$$

has eigenvectors

$$w_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \quad w_2 = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} \quad w_3 = \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix}.$$

a) Find the eigenvalue associated to each of these eigenvectors.

$$\lambda_1 = \boxed{-\frac{1}{2}} \qquad \lambda_2 = \boxed{1} \qquad \lambda_3 = \boxed{2}$$

Just compute Aw_i and see what scalar you have to multiply w_i by to get Aw_i . In fact, since you're told that w_1, w_2, w_3 are eigenvectors, you really just need to compute the first coordinate of Aw_i . For instance,

$$Aw_1 = \begin{pmatrix} -1/2 \\ ? \\ ? \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix},$$

so $\lambda_1 = -1/2$.

b) Compute the characteristic polynomial of *A*. (You need not expand a product of polynomials.)

 $p(\lambda) = -(\lambda + \frac{1}{2})(\lambda - 1)(\lambda - 2)$ Its linear factors are $\lambda - \lambda_1$, $\lambda - \lambda_2$, $\lambda - \lambda_3$, but its λ^3 -coefficient is $(-1)^3 = -1$.

c) Find an invertible matrix *C* and a diagonal matrix *D* such that $A = CDC^{-1}$.

$$C = \begin{pmatrix} 1 & 1 & -2 \\ -2 & -1 & 3 \\ 2 & 5 & -6 \end{pmatrix} \quad D = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

The columns of *C* are w_1, w_2, w_3 and the diagonal entries of *D* are your answers to **a**).

d) If v = (-1, 3, 2), compute $A^{100}v$. (You can write your answer in terms of w_1, w_2, w_3 .)

 $A^{100}v = -(-\frac{1}{2})^{100}w_1 + 2w_2 + 2^{100}w_3$ First you have to expand in the eigenbasis: you solve $v = x_1w_1 + x_2w_2 + x_3w_3$ to get $x_1 = -1$, $x_2 = 2$, $x_3 = 1$ so that $v = -w_1 + 2w_2 + w_3$. Then multiply by A^{100} .

e) For which vectors *u* does $||A^k u||$ not approach ∞ as $k \to \infty$?

When you expand $u = x_1w_1 + x_2w_2 + x_3w_3$ in the eigenbasis, you get

$$A^{n}u = \left(-\frac{1}{2}\right)^{n} x_{1}w_{1} + x_{2}w_{2} + 2^{100}x_{3}w_{3}.$$

If $x_3 = 0$ then this approaches x_2w_2 ; otherwise it becomes arbitrarily long. So the answer is "all $u \in \text{Span}\{w_1, w_2\}$ ".

Problem 4.

[10 points]

A certain 2×2 matrix *A* has eigenvalues 0 and -1, with corresponding eigenspaces drawn below.

a) Draw and label *Ax* and *Ay*.

Write x as the sum of the red vector and the green vector. When you multiply by A, the green vector goes to 0 (it's in the null space), and the red vector gets negated. Likewise for y.

b) Draw and label Nul(*A*) and Row(*A*). (The eigenspaces are reproduced in gray.)

The null space is the 0-eigenspace. The row space is its orthogonal complement.

Problem 5.

[20 points]

14

Short-answer questions: no explanation is needed unless indicated otherwise.

a) Compute the area of the parallelogram. (Grid marks are one unit apart.)

b) For which value(s) of *k*, if any, is the following matrix not invertible?

Compute det(A) by expanding cofactors. It helps to do the row operation $R_3 = 2R_1$ first. $A = \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & k & 4 \\ 2 & 1 & -1 & 2 \\ 0 & 3 & 2 & 0 \end{pmatrix}$

c) Suppose that *A* is an $n \times n$ matrix with characteristic polynomial

$$p(\lambda) = \lambda(\lambda - 1)(\lambda - 2)^2$$

Which of the following can you determine from this information?

- The number *n*. The trace of *A*.
- The determinant of *A*.

- The eigenvalues of *A*.
- Whether *A* is invertible.
- \bigcirc Whether *A* is diagonalizable.

The number *n* is the degree of $p(\lambda)$; Tr(*A*) is the λ^2 -coefficient; det(*A*) is the constant coefficient; the eigenvalues are the roots; *A* is invertible if det(*A*) \neq 0. You don't know if *A* is diagonalizable because GM(2) could be 1 or 2.

d) Suppose that v is a 3-eigenvector of *A*. Briefly explain why $v \in Col(A)$.

If Av = 3v then $v = A(\frac{1}{3}v)$.

Problem 6.

In each part, either provide an example, or explain why no example exists. (No explanation is required if an example does exist.)

a) A 2 × 2 non-diagonalizable matrix with eigenvalues 1 and -1.

Impossible: a 2×2 matrix with two eigenvalues is diagonalizable.

b) A 2 × 2 matrix whose 1-eigenspace is the line x + 2y = 0 and whose 2-eigenspace is the line x + 3y = 0.

$$CDC^{-1}$$
 for $C = \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix}$ $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

c) A 3 × 2 matrix A and a vector b such that Ax = b does not have a least-squares solution.

Impossible: Ax = b always has a least-squares solution.

d) A 2×2 matrix that is *orthogonal* but has no zero entries.

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

for most values of θ .