MATH 218D-1 MIDTERM EXAMINATION 2

Name	Duke Email	@duke.edu
itume	Duke Linun	Guunorouu

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic, but you should not need one. You may bring a 3 × 5-**inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

[This page intentionally left blank]

Problem 1.

[18 points]

c) Compute the orthogonal projection of b = (3, 0, 0, 0, -1) onto Nul(*A*).

[Scratch work for Problem 1]

(Problem 1, continued)

 $b_{\operatorname{Row}(B)} = \left(\begin{array}{c} \\ \\ \end{array} \right).$

 $P_V =$

Now consider the matrix

$$B = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ -2 & 2 & 0 & -4 & -2 \end{pmatrix}.$$

d) The row space of *B* is a (circle one) $\begin{pmatrix} \text{line} \\ \text{plane} \\ \text{space} \end{pmatrix}$ in (fill in the blank) **R**.

e) Compute the orthogonal projection of b = (2, 0, 0, 3, -1) onto Row(*B*).

f) Compute the projection matrix P_V for V = Nul(B).

g) Find a basis for $Nul(P_V)$.

[Scratch work for Problem 1]

Problem 2.

[17 points]

Consider the matrix

$$A = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 4 & -1 \\ 1 & 2 & 5 \\ 1 & 2 & 3 \end{pmatrix}$$

Applying the Gram–Schmidt procedure to its columns gives:

a) Compute the *QR* decomposition of *A*.

(Check your work! Does A = QR? Does Q have orthonormal columns? The rest of the problem will be much easier if so.)

b) Find the least-squares solution of Ax = (2, 0, -4, 2).

[Scratch work for Problem 2]

(Problem 2, continued)

c) Compute the orthogonal projection of b = (2, 0, -4, 2) onto V = Col(A).

 $b_V = \left(\begin{array}{c} \\ \\ \end{array} \right).$

 $v = \left(\begin{array}{c} \\ \\ \\ \end{array} \right).$

|.

}.

d) Find vector v in Nul(A^T).

e) Compute the projection matrix P_V onto V = Col(A).

 $P_V =$

f) Find an eigenbasis for P_V .

[Scratch work for Problem 2]

Problem 3.

[15 points]

The matrix

$$A = \begin{pmatrix} 61/2 & 12 & -7/2 \\ -51 & -20 & 6 \\ 75 & 30 & -8 \end{pmatrix}$$

has eigenvectors

$$w_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \quad w_2 = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} \quad w_3 = \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix}.$$

a) Find the eigenvalue associated to each of these eigenvectors.

$$\lambda_1 =$$
 $\lambda_2 =$ $\lambda_3 =$

b) Compute the characteristic polynomial of *A*. (You need not expand a product of polynomials.)

$$p(\lambda) =$$

c) Find an invertible matrix *C* and a diagonal matrix *D* such that $A = CDC^{-1}$.

d) If v = (-1, 3, 2), compute $A^{100}v$. (You can write your answer in terms of w_1, w_2, w_3 .) $A^{100}v =$

e) For which vectors *u* does $||A^k u||$ not approach ∞ as $k \to \infty$?

[Scratch work for Problem 3]

Problem 4.

[10 points]

A certain 2×2 matrix *A* has eigenvalues 0 and -1, with corresponding eigenspaces drawn below.

a) Draw and label *Ax* and *Ay*.

b) Draw and label Nul(*A*) and Row(*A*). (The eigenspaces are reproduced in gray.)

[Scratch work for Problem 4]

Problem 5.

[20 points]

Short-answer questions: no explanation is needed unless indicated otherwise.

a) Compute the area of the parallelogram. (Grid marks are one unit apart.)

b) For which value(s) of *k*, if any, is the following matrix not invertible?

c) Suppose that *A* is an $n \times n$ matrix with characteristic polynomial

$$p(\lambda) = \lambda(\lambda - 1)(\lambda - 2)^2$$

Which of the following can you determine from this information?

- \bigcirc The number *n*.
- \bigcirc The trace of *A*.
- \bigcirc The determinant of *A*.

 \bigcirc The eigenvalues of *A*.

 \bigcirc Whether *A* is invertible.

 \bigcirc Whether *A* is diagonalizable.

d) Suppose that *v* is a 3-eigenvector of *A*. Briefly explain why $v \in Col(A)$.

[Scratch work for Problem 5]

Problem 6.

[20 points]

In each part, either provide an example, or explain why no example exists. (No explanation is required if an example does exist.)

a) A 2 × 2 *non-diagonalizable* matrix with eigenvalues 1 and -1.

b) A 2 × 2 matrix whose 1-eigenspace is the line x + 2y = 0 and whose 2-eigenspace is the line x + 3y = 0.

c) A 3 \times 2 matrix *A* and a vector *b* such that Ax = b does not have a least-squares solution.

d) A 2×2 matrix that is *orthogonal* but has no zero entries.

[Scratch work for Problem 6]