
Math 218D-1: Homework #12

due Wednesday, November 22, at 11:59pm

1. For each symmetric matrix S, find an orthogonal matrix Q and a diagonal matrix D
such that S =QDQT .

a)
�

1 −3
−3 1

�

b)
�

1 −3
−3 9

�

c)
�

14 2
2 11

�

d)

 

7 2 0
2 6 2
0 2 5

!

e)

 

1 −8 4
−8 1 4

4 4 7

!

2. For each matrix S of Problem 1, decide if S is positive-semidefinite, and if so, com-
pute its positive-semidefinite square root

p
S =Q

p
DQT . Verify that (

p
S)2 = S.

Remark: Since
p

S is also symmetric, we have S =
p

ST
p

S, so this is another way
to factor a positive-semidefinite matrix as AT A.

3. Consider the matrix

S =

 

7 2 0
2 6 2
0 2 5

!

of Problem 1(d). Write S in the form λ1u1uT
1 + λ2u2uT

2 + λ3u3uT
3 for numbers

λ1,λ2,λ3 and orthonormal vectors u1, u2, u3.

4. Find all possible orthogonal diagonalizations

1
5

�

41 12
12 34

�

=QDQT .

5. Let S be a symmetric matrix such that Sk = 0 for some k > 0. Show that S = 0.
[Hint: Use HW9#19.]

6. Let S be a symmetric orthogonal 2× 2 matrix.

a) Show that S = ±I2 if it has only one eigenvalue.
[Hint: See HW9#17.]

b) Suppose that S has two eigenvalues. Show that S is the matrix for the reflection
over a line L in R2. (Recall that the reflection over a line L is given by RL =
I2 − 2PL⊥ .)
[Hint: Write S as λ1u1uT

1 +λ2u2uT
2 , and use the projection formula to write I2

and PL⊥ in this form as well. What is L?]



7. a) Let S be a diagonalizable (over R) n× n matrix with orthogonal eigenspaces:
that is, eigenvectors with different eigenvalues are orthogonal. Prove that S is
symmetric.
[Hint: choose orthonormal bases for each eigenspace.]

b) Let S be a matrix that can be written in the form

S = λ1q1qT
1 +λ2q2qT

2 + · · ·+λnqnqT
n

for some vectors q1, q2, . . . , qn. Prove that S is symmetric.

c) Let V be a subspace of Rn, and let PV be the projection matrix onto V . Use a)
or b) to prove that PV is symmetric. (There is a proof in the notes using the
formula PV = A(AT A)−1AT .)

8. For which matrices A is S = AT A positive-definite? If S is not positive-definite, find
a vector x such that x T Sx = 0. In any case, do not compute S!

a)

 

1 1
2 1
0 3

!

b)
�

1 2 0
1 1 3

�

c)

 

1 2 3
4 5 6
7 8 9

!

.

9. a) If S is positive-definite and C is invertible, show that CSC T is positive-definite.

b) If S and T are positive-definite, show that S + T is positive-definite.

c) If S is positive-definite, show that S is invertible and that S−1 is positive-
definite.

[Hint: For a) and b) use the positive-energy characterization of positive-definiteness;
for c) use the positive-eigenvalue characterization.]

10. Consider the matrix

S =
�

cosθ − sinθ
sinθ cosθ

��

3 0
0 4

��

cosθ sinθ
− sinθ cosθ

�

.

Without multiplying the matrices, find:

a) The determinant of S.

b) The eigenvalues of S.

c) The eigenvectors of S.

d) A reason why S is symmetric positive-definite.



11. Let S be a positive-definite matrix.

a) Show that the diagonal entries of S are positive.
[Hint: compute eT

i Sei.]

b) Show that the diagonal entries of S are all greater than or equal to the smallest
eigenvalue of S.
[Hint: if not, apply a) to S− aIn for a diagonal entry a that is smaller than all
eigenvalues.]

12. Decide if each statement is true or false, and explain why. All matrices are real.

a) A symmetric matrix is diagonalizable.

b) If A is any matrix then AT A is positive-semidefinite.

c) A symmetric matrix with positive determinant is positive-definite.

d) If A= C DC−1 for a diagonal matrix D and a non-orthogonal invertible matrix
C , then A is not symmetric.

e) A positive-definite matrix has the form AT A for a matrix A with full column
rank.

f) The only positive-definite projection matrix is the identity.

g) All eigenvalues of a positive-definite symmetric matrix are positive real num-
bers.

13. For each symmetric matrix S, decide if S is positive-definite. If so, find its LDLT

and Cholesky decompositions. Do not compute any eigenvalues!

a)
�

1 1
1 3

�

b)

 

1 2 0
2 5 −1
0 −1 3

!

c)

 

3 −2 2
−2 4 0

2 0 2

!

d)







1 1 2 1
1 3 6 3
2 6 14 8
1 3 8 9






e)







−1 2 3 −2
2 −3 −8 4
3 −8 −4 6
−2 4 6 −1







14. a) For each symmetric matrix S, compute the associated quadratic form q(x) =
x T Sx .

�

1 2
2 1

� �

0 1
1 0

�

 

1 0 3
0 −1 1
3 1 0

!

b) Let A be a square matrix and let S = 1
2(A+ AT ). Show that S is symmetric and

that x T Ax = x T Sx . (This is why we only consider symmetric matrices when
studying quadratic forms.)



15. For each quadratic form q(x1, x2), i) write q(x) in the form x T Sx for a symmetric
matrix S, ii) find a change of variables y1, y2 such that q(x) = λ1 y2

1 + λ2 y2
2 , and

iii) find the maximum and minimum values of q(x1, x2) subject to the constraint
x2

1 + x2
2 = 1, and at which points (x1, x2) these values are attained.

a) q(x1, x2) = 14x2
1 + 4x1 x2 + 11x2

2

b) q(x1, x2) =
1

10
(21x2

1 − 6x1 x2 + 29x2
2)

c) q(x1, x2) = x2
1 − 6x1 x2 + x2

2

16. For the quadratic form

q(x1, x2, x3) = 7x2
1 + 6x2

2 + 5x2
3 + 4x1 x2 + 4x2 x3,

find a change of variables y1, y2, y3 such that q(x) = λ1 y2
1 + λ2 y2

2 + λ3 y2
3 , and

find the maximum and minimum values of q(x1, x2, x3) subject to the constraint
x2

1+x2
2+x2

3 = 1, along with the points (x1, x2, x3) at which these values are attained.

17. Consider the quadratic form

q(x1, x2, x3) = x2
1 + x2

2 + 7x2
3 − 16x1 x2 + 8x1 x3 + 8x2 x3.

Find all vectors x = (x1, x2, x3) maximizing q(x) subject to ∥x∥ = 1. (There are
infinitely many!)


