Math 218D-1: Homework #12

due Wednesday, November 22, at 11:59pm

1. For each symmetric matrix *S*, find an orthogonal matrix *Q* and a diagonal matrix *D* such that $S = QDQ^{T}$.

a)
$$\begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}$ c) $\begin{pmatrix} 14 & 2 \\ 2 & 11 \end{pmatrix}$
d) $\begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}$ e) $\begin{pmatrix} 1 & -8 & 4 \\ -8 & 1 & 4 \\ 4 & 4 & 7 \end{pmatrix}$

- 2. For each matrix *S* of Problem 1, decide if *S* is positive-semidefinite, and if so, compute its positive-semidefinite square root $\sqrt{S} = Q\sqrt{D}Q^T$. Verify that $(\sqrt{S})^2 = S$. **Remark:** Since \sqrt{S} is also symmetric, we have $S = \sqrt{S^T}\sqrt{S}$, so this is another way to factor a positive-semidefinite matrix as $A^T A$.
- **3.** Consider the matrix

$$S = \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$

of Problem 1(d). Write *S* in the form $\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \lambda_3 u_3 u_3^T$ for numbers $\lambda_1, \lambda_2, \lambda_3$ and orthonormal vectors u_1, u_2, u_3 .

4. Find *all possible* orthogonal diagonalizations

$$\frac{1}{5} \begin{pmatrix} 41 & 12 \\ 12 & 34 \end{pmatrix} = QDQ^T.$$

- **5.** Let *S* be a symmetric matrix such that $S^k = 0$ for some k > 0. Show that S = 0. [Hint: Use HW9#19.]
- **6.** Let *S* be a symmetric orthogonal 2×2 matrix.
 - a) Show that $S = \pm I_2$ if it has only one eigenvalue. [Hint: See HW9#17.]
 - **b)** Suppose that *S* has two eigenvalues. Show that *S* is the matrix for the reflection over a line *L* in \mathbb{R}^2 . (Recall that the reflection over a line *L* is given by $R_L = I_2 2P_{L^{\perp}}$.)

[Hint: Write *S* as $\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T$, and use the projection formula to write I_2 and $P_{L^{\perp}}$ in this form as well. What is *L*?]

7. a) Let *S* be a diagonalizable (over **R**) $n \times n$ matrix with orthogonal eigenspaces: that is, eigenvectors with different eigenvalues are orthogonal. Prove that *S* is symmetric.

[Hint: choose *orthonormal* bases for each eigenspace.]

b) Let *S* be a matrix that can be written in the form

$$S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \dots + \lambda_n q_n q_n^T$$

for some vectors q_1, q_2, \ldots, q_n . Prove that *S* is symmetric.

- c) Let *V* be a subspace of \mathbf{R}^n , and let P_V be the projection matrix onto *V*. Use **a**) or **b**) to prove that P_V is symmetric. (There is a proof in the notes using the formula $P_V = A(A^T A)^{-1}A^T$.)
- **8.** For which matrices *A* is $S = A^T A$ positive-definite? If *S* is not positive-definite, find a vector *x* such that $x^T S x = 0$. In any case, do not compute *S*!

	(1)	1)		(1	ე	0)		(1)	2	3 \	
a)	2	1	b)		2 1	$\left(\begin{array}{c} 0\\ 3 \end{array} \right)$	c)	4	5	6	
	0)	3 J		(1	1	5)		\ 7	8	9)	

- **9.** a) If *S* is positive-definite and *C* is invertible, show that *CSC^T* is positive-definite.
 - **b)** If *S* and *T* are positive-definite, show that S + T is positive-definite.
 - c) If S is positive-definite, show that S is invertible and that S^{-1} is positive-definite.

[**Hint:** For **a**) and **b**) use the positive-energy characterization of positive-definiteness; for **c**) use the positive-eigenvalue characterization.]

10. Consider the matrix

$$S = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Without multiplying the matrices, find:

- **a)** The determinant of *S*.
- **b)** The eigenvalues of *S*.
- c) The eigenvectors of *S*.
- d) A reason why *S* is symmetric positive-definite.

- **11.** Let *S* be a positive-definite matrix.
 - a) Show that the diagonal entries of *S* are positive.
 [Hint: compute e^T_iSe_i.]
 - **b)** Show that the diagonal entries of *S* are all greater than or equal to the smallest eigenvalue of *S*.

[**Hint:** if not, apply **a**) to $S - aI_n$ for a diagonal entry *a* that is smaller than all eigenvalues.]

- 12. Decide if each statement is true or false, and explain why. All matrices are real.a) A symmetric matrix is diagonalizable.
 - **b)** If A is any matrix then $A^T A$ is positive-semidefinite.
 - c) A symmetric matrix with positive determinant is positive-definite.
 - **d)** If $A = CDC^{-1}$ for a diagonal matrix *D* and a non-orthogonal invertible matrix *C*, then *A* is not symmetric.
 - e) A positive-definite matrix has the form $A^T A$ for a matrix A with full column rank.
 - f) The only positive-definite projection matrix is the identity.
 - **g)** All eigenvalues of a positive-definite symmetric matrix are positive real numbers.
- **13.** For each symmetric matrix *S*, decide if *S* is positive-definite. If so, find its LDL^{T} and Cholesky decompositions. Do not compute any eigenvalues!

a) $\begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\binom{1}{3}$		b)	$\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}$	2 5 —1	0 —1 3		c)	$ \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} $	-2 4 0	$\begin{pmatrix} 2\\0\\2 \end{pmatrix}$	
d)	$\begin{pmatrix} 1\\1\\2\\1 \end{pmatrix}$	1 3 6 3	2 6 14 8	$\begin{pmatrix} 1\\ 3\\ 8\\ 9 \end{pmatrix}$		e)	$\begin{pmatrix} -1\\2\\3\\-2 \end{pmatrix}$	2 -3 -8 4	3 8 4 6	$\begin{pmatrix} -2 \\ 4 \\ 6 \\ -1 \end{pmatrix}$		

14. a) For each symmetric matrix *S*, compute the associated quadratic form $q(x) = x^T S x$.

(1 2)	(0, 1)	11	0	3 \
		0	-1	1
(2 1)	$(1 \ 0)$		1	
		(3)	T	0)

b) Let *A* be a square matrix and let $S = \frac{1}{2}(A + A^T)$. Show that *S* is symmetric and that $x^T A x = x^T S x$. (This is why we only consider symmetric matrices when studying quadratic forms.)

15. For each quadratic form $q(x_1, x_2)$, **i**) write q(x) in the form $x^T S x$ for a symmetric matrix *S*, **ii**) find a change of variables y_1, y_2 such that $q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2$, and **iii**) find the maximum and minimum values of $q(x_1, x_2)$ subject to the constraint $x_1^2 + x_2^2 = 1$, and at which points (x_1, x_2) these values are attained.

a)
$$q(x_1, x_2) = 14x_1^2 + 4x_1x_2 + 11x_2^2$$

b) $q(x_1, x_2) = \frac{1}{10}(21x_1^2 - 6x_1x_2 + 29x_2^2)$
c) $q(x_1, x_2) = x_1^2 - 6x_1x_2 + x_2^2$

16. For the quadratic form

$$q(x_1, x_2, x_3) = 7x_1^2 + 6x_2^2 + 5x_3^2 + 4x_1x_2 + 4x_2x_3,$$

find a change of variables y_1, y_2, y_3 such that $q(x) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$, and find the maximum and minimum values of $q(x_1, x_2, x_3)$ subject to the constraint $x_1^2 + x_2^2 + x_3^2 = 1$, along with the points (x_1, x_2, x_3) at which these values are attained.

17. Consider the quadratic form

$$q(x_1, x_2, x_3) = x_1^2 + x_2^2 + 7x_3^2 - 16x_1x_2 + 8x_1x_3 + 8x_2x_3.$$

Find all vectors $x = (x_1, x_2, x_3)$ maximizing q(x) subject to ||x|| = 1. (There are infinitely many!)