
Math 218D-1: Homework #13

due Wednesday, November 29, at 11:59pm

1. For each quadratic form q(x1, x2) of HW12#15(a,b), first i) draw the solutions
of q(x1, x2) = 1, being sure to draw the shortest and longest solutions, and then
ii) find the maximum and minimum values of ∥x∥2 subject to the constraint q(x) =
1, and at which points (x1, x2) these values are attained.

What happens if you try to extremize ∥x∥2 subject to

q(x1, x2) = x2
1 − 6x1 x2 + x2

2 = 1?

(This is the form from part (c) of HW12#15.)

2. For the quadratic form

q(x1, x2, x3) = 7x2
1 + 6x2

2 + 5x2
3 + 4x1 x2 + 4x2 x3

of HW12#16, find the maximum and minimum values of ∥x∥2 subject to the con-
straint q(x) = 1, along with the points (x1, x2, x3) at which these values are at-
tained.

3. a) Consider the quadratic form

q(x1, x2, x3) = 7x2
1 + 6x2

2 + 5x2
3 + 4x1 x2 + 4x2 x3,

of HW12#16. Find the smallest value of q(x) subject to the constraints ∥x∥= 1
and x ⊥ 1

3(1,−2, 2). At which vectors x is this minimum attained?

b) Consider the quadratic form

q(x1, x2, x3) = x2
1 + x2

2 + 7x2
3 − 16x1 x2 + 8x1 x3 + 8x2 x3.

of HW12#17. Find the largest value of q(x) subject to the constraints ∥x∥= 1
and x ⊥ 1p

5
(0,1, 2). At which vectors x is this maximum attained?

4. For each matrix A, find the minimum and maximum values of ∥Ax∥2 subject to the
constraint ∥x∥= 1. At which vectors are these extrema achieved? Check your work
by choosing a unit vector x maximizing ∥Ax∥2, computing b = Ax , and verifying
that ∥b∥2 is equal to the maximum.
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5. Consider the matrix

A=







3 2 −1 4 −3
1 7 −2 3 −5
2 0 8 −1 1
1 2 0 3 9






.

a) Find a unit vector u1 maximizing ∥Ax∥2 subject to ∥x∥= 1.

b) Find the maximum value of ∥Ax∥2 subject to ∥x∥= 1 and x ⊥ u1.

c) Find the minimum value of ∥Ax∥ subject to ∥x∥= 1 without doing any work.

You’ll need to use a computer algebra system. With the Sage cell on the course
webpage, you’d want something like this:

A = Matrix([[ 3., 2.,-1., 4.,-3.],
[ 1., 7.,-2., 3.,-5.],
[ 2., 0., 8.,-1., 1.],
[ 1., 2., 0., 3., 9.]])

pprint((A.T*A).eigenvects())

(Entering numbers as “3.” instead of “3” forces SymPy to perform a floating-point
computation instead of a symbolic one.)

6. Show that the maximum value of ∥Ax∥ subject to ∥x∥= 1 is the same as the maxi-
mum value of ∥Ax∥/∥x∥ subject to x ̸= 0.

Remark: This gives an equivalent definition of the matrix norm ∥A∥.

7. In this problem, we will touch on the role of quadratic optimization in spectral
graph theory. Spectral graph theory is the study of graphs using linear algebra, and
is widely applied to problems in networking and partitioning. (Google’s PageRank
algorithm can be formulated as a spectral graph theory problem.)

A graph is a set of vertices, or points, connected by a set of edges. For simplicity, we
will assume that each edge has distinct endpoints (i.e., there are no loop edges),
and that there is at most one edge connecting any two vertices: such a graph is
called simple. Under these assumptions, an edge is determined by the two vertices
it connects, so we can write e = (1,2) for the edge connecting vertices 1 and 2. We
also write i ∼ j if (i, j) is an edge of G. The degree of a vertex is the number of
edges connected to it; the degree of vertex i is written deg(i).

Let G be a graph with n vertices labeled 1, 2, . . . , n. We consider a vector x ∈ Rn

as a way to assign a real number to each vertex: the ith coordinate x i is the number
attached to the ith vertex. The Laplacian of G is the n×n matrix L whose (i, j) entry
is

Li j =







deg(i) if i = j
−1 if there is an edge from vertex i to vertex j
0 otherwise.



Note that L is symmetric. Let x ∈ Rn and let y = Lx . Then the ith coordinate of y
is

(⋆) yi = x i deg(i)−
∑

j∼i

x j =
∑

j∼i

(x i − x j).

In other words, y is the vector that assigns the number
∑

j∼i(x i − x j) to vertex i.
The eigenvalues of the graph Laplacian contain important information about the

structure of the graph.

a) Show that the vector 1= (1, 1, . . . , 1) ∈ Rn is in the null space of L.

It follows that 0 is always an eigenvalue of L.

b) Show that x T Lx =
∑

j∼i

(x i − x j)
2. Explain why L is positive-semidefinite.

Since L is positive-semidefinite, all of its eigenvalues are nonnegative, so 0 is the
smallest eigenvalue of L. The fact that 0 is an eigenvalue gives us no information
about the graph, so we wish to “rule it out” by imposing the constraint x ⊥ 1.

According to b), minimizing q(x) = x T Lx subject to the constraints ∥x∥2 = 1
and x ⊥ 1 amounts to finding a way to assign a number to each vertex such that
neighboring vertices have similar values, but such that the sum of the values is zero
(x ⊥ 1) and the sum of their squares is 1 (∥x∥= 1).

For each of the following graphs, i) compute the Laplacian matrix L and ii) min-
imize x T Lx subject to x ⊥ 1 and ∥x∥ = 1. iii) For a (unit) vector x achieving this
minimum, draw the number x i next to vertex i on the graph. iv) What does the
second-smallest eigenvalue say about the graph? (This is open-ended.)
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You should feel free to use a computer algebra system to compute the eigenvalues
and eigenvectors. For instance, you can use SymPy in the Sage cell on the course
webpage. Finding the eigenvalues and eigenvectors of a matrix in SymPy is done



as follows: if your matrix is

A=

 

7 2 0
2 6 2
0 2 5

!

then you would type:

A = Matrix([[7.,2.,0.],[2.,6.,2.],[0.,2.,5.]])
pprint(A.eigenvects())

(Entering numbers as “3.” instead of “3” forces SymPy to perform a floating-point
computation instead of a symbolic one.) The output is a list of tuples of the form
(eigenvalue, multiplicity, eigenspace basis)—note that the eigenspace basis will not
necessarily be orthonormal.


