
Math 218D-1: Homework #14

due Wednesday, December 6, at 11:59pm

1. For each matrix A, find the singular value decomposition in the outer product form

A= σ1u1vT
1 +σ2u2vT

2 + · · ·+σrur vT
r .
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2. Consider the matrix

A=
�

8 4
1 13

�

of Problem 1(a). Let σ1,σ2 be the singular values of A. Find all singular value
decompositions A= σ1u1vT

1 +σ2u2vT
2 .

3. Let A be a matrix with nonzero orthogonal columns w1, . . . , wn of lengthsσ1 ≥ σ2 ≥
. . .≥ σn, respectively. Find the SVD of A in outer product form.

4. Let S be a symmetric matrix with eigenvaluesλ1, . . . ,λn (counted with multiplicity).
Order the eigenvalues so that |λ1| ≥ |λ2| ≥ · · · ≥ |λr | > 0 = λr+1 = · · · = λn. Let
{v1, . . . , vn} be an orthonormal eigenbasis, where vi has eigenvalue λi.

a) Show that the singular values of S are |λ1|, . . . , |λr |. In particular, rank(S) = r.

b) Find the singular value decomposition of S in outer product form, in terms of
the λi and the vi.

5. a) Show that all singular values of an orthogonal matrix are equal to 1.

b) Let A be an m × n matrix, let Q1 be an m × m orthogonal matrix, and let Q2
be an n × n orthogonal matrix. Show that A has the same singular values as
Q1AQ2. [Hint: Use HW10#11.]

Remark: This fact is heavily exploited when numerically computing the SVD: a
complicated matrix is simplified by multiplying on the left and right by simple or-
thogonal matrices.

6. Let A be a matrix of full column rank and let A=QR be the QR decomposition of A.

a) Show that A and R have the same singular valuesσ1, . . . ,σr and the same right
singular vectors v1, . . . , vr .

b) What is the relationship between the left singular vectors of A and R?

https://en.wikipedia.org/wiki/Householder_transformation
https://en.wikipedia.org/wiki/Householder_transformation


7. Let A be a matrix with first singular valueσ1 and first right singular vector v1. Recall
that the matrix norm of A is the maximum value of ∥Ax∥ subject to ∥x∥= 1, and is
denoted ∥A∥.

a) Show that ∥Ax∥ is maximized at x = v1 (subject to ∥x∥ = 1), with maximum
value σ1.

b) Suppose now that A is square and λ is an eigenvalue of A. Show that |λ| ≤ σ1.
(You may assume λ is real, although it is also true for complex eigenvalues.)

This shows that the largest singular value is at least as big as the largest eigenvalue.

8. a) Find the eigenvalues and singular values of

A=







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

b) Find the (real and complex) eigenvalues and singular values of

A′ =







0 1 0 0
0 0 1 0
0 0 0 1

0.000 1 0 0 0






.

c) Note that A is very close to A′ numerically. Were the eigenvalues of A close to
the eigenvalues of A′? What about the singular values?

This problem is meant to illustrate the fact that eigenvalues are numerically unstable
but singular values are numerically stable. This is another advantage of the SVD.

9. Decide if each statement is true or false, and explain why.

a) The left singular vectors of A are eigenvectors of AT A and the right singular
vectors are eigenvectors of AAT .

b) For any matrix A, the matrices AAT and AT A have the same eigenvalues.

c) If S is symmetric, then the nonzero eigenvalues of S are its singular values.

d) If A does not have full column rank, then 0 is a singular value of A.

e) Suppose that A is invertible with singular values σ1, . . . ,σn. Then for c ≥ 0,
the singular values of A+ cIn are σ1 + c, . . . ,σn + c.

f) The right singular vectors of A are orthogonal to Nul(A).



10. For each matrix A of Problem 1:

a)
�

8 4
1 13

�

b)
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1 3
2 6
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c)
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1 5
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d)
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3 7 1 5
3 1 7 5
6 2 2 −2
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find the singular value decomposition in the matrix form

A= UΣV T .

11. For each matrix A of Problem 10, write down orthonormal bases for all four funda-
mental subspaces. (This can be read off from your answers to Problem 10.)

12. a) Let A be an invertible n × n matrix. Show that the product of the singular
values of A equals the absolute value of the product of the (real and complex)
eigenvalues of A (counted with algebraic multiplicity).
[Hint: Both equal |det(A)|. What is det(AT A)?]

b) Find an example of a 2×2 matrix A with distinct positive eigenvalues that are
not equal to any of the singular values of A.
[Hint: One of the matrices in Problem 1 works.]

13. Let S be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let S = QDQT

be an orthogonal diagonalization of S, where D has diagonal entries λ1, . . . ,λn.
Show that S =QDQT is a singular value decomposition if and only if S is positive-

semidefinite. [See Problem 4.]

14. Let A be a square, invertible matrix with singular values σ1, . . . ,σn.

a) Show that A−1 has the same singular vectors as AT , with singular values σ−1
n ≥

· · · ≥ σ−1
1 . [Hint: What is A+?]

b) Let λ be an eigenvalue of A. Use Problem 7(b) and a) to show that σn ≤ |λ|.
It follows that the absolute values of all eigenvalues of A are contained in the inter-
val [σn,σ1]. Compare Problem 12.



15. A certain 2×2 matrix A has singular valuesσ1 = 2 andσ2 = 1.5. The right-singular
vectors v1, v2 and the left-singular vectors u1, u2 are shown in the pictures below.

a) Draw Ax and Ay in the picture on the right.

b) Draw {Ax : ∥x∥= 1} (what you get by multiplying all vectors on the unit circle
by A) in the picture on the right.

v1
v2

x

y u1
u2

16. Consider the following 3× 2 matrix A and its SVD:

A=
�

1 1 0
0 −1 −1

�

=
1
p

2
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� �p
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.

Draw {Ax : ∥x∥ = 1} (what you get by
multiplying all vectors on the unit sphere
by A) in the picture on the right.

17. Compute the pseudoinverse of each matrix of Problem 10.



18. Consider the matrix

A=

 

3 7 1 5
3 1 7 5
6 2 2 −2

!

of Problem 17(e). Find the matrix PV for projection onto V = Row(A) in two ways:

a) Multiply out PV = A+A.

b) In Problem 11 you found Nul(A) = Span{v} for v = (1,−1,−1,1). Compute
PV⊥ = vvT/v · v and PV = I4 − PV⊥ .

Your answers to a) and b) should be the same, of course!

19. Let A be an m× n matrix.

a) If A has full column rank, show that A+A= In.

b) If A has full row rank, show that AA+ = Im.

In particular, a matrix with full column rank admits a left inverse, and a matrix with
full row rank admits a right inverse. Compare HW5#11.

20. What is the pseudoinverse of the m× n zero matrix?

21. Consider the matrix A=
�

1 3
2 6

�

of Problem 17(b).

a) Find all least-squares solutions of Ax =
�3

1

�

in parametric vector form.

b) Find the shortest least-squares solution bx = A+
�3

1

�

.

c) Draw your answers to a) and b) on the grid below.


