Math 218D-1: Homework #8

due Wednesday, October 25, at 11:59pm

1. Compute the determinants of the following matrices using Gaussian elimination.

a)
$$\begin{pmatrix} -2 & 1 \\ 1 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} -3 & 3 & 2 \\ 3 & 0 & 0 \\ -9 & 18 & 7 \end{pmatrix}$
c) $\begin{pmatrix} -4 & -3 & -3 & -2 \\ 4 & 1 & 2 & -2 \\ -12 & -3 & -9 & 3 \\ 0 & 8 & 19 & 33 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix}$

2. Suppose that

$$\det\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 10.$$

Find the determinants of the following matrices.

a)
$$\begin{pmatrix} d & e & f \\ a & b & c \\ g & h & i \end{pmatrix}$$
 b) $\begin{pmatrix} a & b & c \\ d & e & f \\ g+2d & h+2e & i+2f \end{pmatrix}$ c) $\begin{pmatrix} a & b & c \\ \frac{1}{2}d & \frac{1}{2}e & \frac{1}{2}f \\ g & h & i \end{pmatrix}$ d) $\begin{pmatrix} g & h & i \\ a & b & c \\ d & e & f \end{pmatrix}$ e) $\begin{pmatrix} a & b & c \\ d & e & f \\ 2g+d & 2h+e & 2i+f \end{pmatrix}$ f) $\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$ g) $2\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ h) $\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ i) $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ j) $-\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ l) $\begin{pmatrix} a & b+2c & c \\ d & e+2f & f \\ g & h+2i & i \end{pmatrix}$

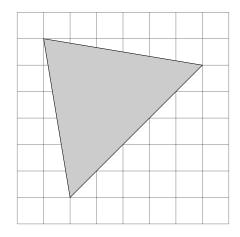
- **3.** Find det(E) when:
 - **a)** *E* is the elementary matrix for a row replacement.
 - **b)** *E* is the elementary matrix for $R_i \times = c$.
 - **c)** *E* is the elementary matrix for a row swap.

4. A matrix *A* has the PA = LU factorization

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} A = L \begin{pmatrix} 2 & 1 & 3 & 0 \\ 0 & -1 & 1 & 5 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

What is det(A)?.

- **5.** Let *A* be the $n \times n$ matrix $(n \ge 3)$ whose (i, j) entry is i + j. Compute $\det(A)$.
- **6.** Recall that an *orthogonal matrix* is a square matrix with orthonormal columns, or equivalently, a square matrix Q such that $Q^TQ = I_n$. Prove that every orthogonal matrix has determinant ± 1 .
- **7.** Let *V* be a subspace of \mathbb{R}^n and let P_V be the projection matrix onto *V*.
 - a) Find $det(P_V)$ when $V \neq \mathbf{R}^n$.
 - **b)** Find $det(P_V)$ when $V = \mathbf{R}^n$.
- **8.** Let *C* be the *hypercube* in \mathbb{R}^4 with corners $(\pm 1, \pm 1, \pm 1, \pm 1)$. Compute the volume of *C*.
- **9.** Let *A* be an $n \times n$ matrix with columns v_1, v_2, \dots, v_n .
 - a) Show that if $\{v_1, v_2, \dots, v_n\}$ is orthogonal then $|\det(A)| = ||v_1|| \, ||v_2|| \cdots ||v_n||$. [Hint: Compute $A^T A$ and its determinant.]
 - **b)** Suppose that *A* is invertible. Show that $|\det(A)| \le ||v_1|| ||v_2|| \cdots ||v_n||$, with equality if and only if the set $\{v_1, v_2, \dots, v_n\}$ is orthogonal. [Hint: Use HW6#5(c) and the *QR* decomposition of *A*.]
- 10. Compute the area of the triangle pictured below using a 2×2 determinant. (The grid marks are one unit apart.)



- 11. Decide if each statement is true or false, and explain why.
 - a) det(A+B) = det(A) + det(B).
 - **b)** $\det(ABC^{-1}) = \frac{\det(A)\det(B)}{\det(C)}.$
 - c) det(AB) = det(BA).
 - **d)** det(3A) = 3 det(A).
 - e) If A^5 is invertible then A is invertible.
 - **f)** The determinant of *A* is the product of its diagonal entries.
 - **g)** If the columns of *A* are linearly dependent, then det(A) = 0.
 - **h)** If A is a 3×3 matrix with determinant zero, then two of the columns of A are scalar multiples of each other.