Math 218D-1: Homework #9

due Wednesday, November 1, at 11:59pm

- **1. a)** Compute the determinants of the matrices in HW8#1 in two more ways: by expanding cofactors along a row, and by expanding cofactors along a column. You should get the same answer using all three methods!
 - **b)** Compute the determinants of the matrices in HW8#1(b) and (d) *again* using Sarrus' scheme.
 - c) For the matrix of HW8#1(c), sum the products of the forward diagonals and subtract the products of the backward diagonals, as in Sarrus' scheme. Did you get the determinant?
- **2.** Compute

$$\det \begin{bmatrix} \begin{pmatrix} -3 & 3 & 2 \\ 3 & 0 & 0 \\ -9 & 18 & 7 \end{pmatrix} - \lambda I_3 \end{bmatrix}$$

where λ is an unknown real number. Your answer will be a function of λ .

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

- **a)** Compute the cofactor matrix *C* of *A*.
- **b)** Compute AC^T . What is the relationship between C^T and A^{-1} ?
- **4.** Consider the $n \times n$ matrix F_n with 1's on the diagonal, 1's in the entries immediately below the diagonal, and -1's in the entries immediately above the diagonal:

$$F_2 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad F_3 = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \qquad F_4 = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad \cdots$$

- a) Show that $det(F_2) = 2$ and $det(F_3) = 3$.
- **b)** Expand in cofactors to show that $det(F_n) = det(F_{n-1}) + det(F_{n-2})$.
- **c)** Compute $det(F_4)$, $det(F_5)$, $det(F_6)$, $det(F_7)$ using **b**).

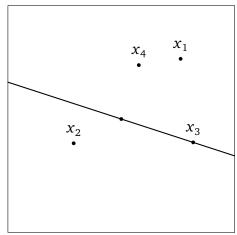
This shows that $det(F_n)$ is the nth Fibonacci number. (The sequence usually starts with $1, 1, 2, 3, \ldots$, so our $det(F_n)$ is the usual n + 1st Fibonacci number.)

- **5.** Let *A* be an $n \times n$ invertible matrix with integer (whole number) entries.
 - a) Explain why det(A) is an integer.
 - **b)** If $det(A) = \pm 1$, show that A^{-1} has integer entries.
 - c) If A^{-1} has integer entries, show that $det(A) = \pm 1$.
- **6.** Let V be a subspace of \mathbb{R}^n . The matrix for reflection over V is

$$R_V = I_n - 2P_{V^{\perp}},$$

where $P_{V^{\perp}} = I_n - P_V$ is the projection matrix onto V^{\perp} .

a) Suppose that V is the line in the picture. Draw the vectors $R_V x_1, R_V x_2, R_V x_3$, and $R_V x_4$ as points in the plane.



- **b)** Show that any reflection matrix R_V is orthogonal. [Hint: Recall that $P_{V^{\perp}}^2 = P_{V^{\perp}} = P_{V^{\perp}}^T$.]
- c) Let *V* be the plane x + y + z = 0. Compute R_V and $\det(R_V)$.
- **d)** Let V be any plane in \mathbb{R}^3 . Prove that $\det(R_V) = -1$, as follows: choose an orthonormal basis $\{u_1, u_2\}$ for V, and let $u_3 = u_1 \times u_2$. Show that the matrix A with columns u_1, u_2, u_3 has determinant 1, and that $R_V A$ has determinant -1.

Summary: a reflection over a plane in \mathbb{R}^3 has determinant -1.

e) Now compute $det(R_L)$, where *L* is the *x*-axis in \mathbb{R}^3 .

7. Consider the paralellepiped P in \mathbb{R}^3 spanned by

$$v_1 = \begin{pmatrix} -1\\2\\1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 0\\-1\\1 \end{pmatrix}.$$

- a) Compute the volume of P using a triple product $(v_1 \times v_2) \cdot v_3$.
- **b)** Compute the area of each face of *P* using cross products.
- **c)** If the "base" of P is the paralellogram spanned by v_1 and v_2 (blue in the picture), show that the height of P is $||v_3|| \sin \theta$, where θ is the angle that v_3 makes with the base. (Draw a simpler picture.)
- **d)** The volume of *P* is the area of the base of *P* times its height. How do you reconcile **c)** with **a)**? (Remember that $||u \cdot v|| = ||u|| \, ||v|| \cos(\text{the angle from } u \text{ to } v)$.)
- **8.** Use a cross product to find an implicit equation for the plane

$$V = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \right\}.$$

Compare HW6#7(a).

- **9.** a) Let v = (a, b) and w = (c, d) be vectors in the plane, and let $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. By taking the cross product of (a, b, 0) and (c, d, 0), explain how the right-hand rule determines the sign of det(A).
 - **b)** Using the identity

$$\begin{bmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} d \\ e \\ f \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} g \\ h \\ i \end{pmatrix} = \det \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix},$$

explain how the right-hand rule determines the sign of a 3×3 determinant.

- 10. Decide if each statement is true or false, and explain why.
 - a) The determinant of the cofactor matrix of A equals the determinant of A.
 - **b)** $u \times v = v \times u$.
 - **c)** If $u \times v = 0$ then $u \perp v$.

11. For each matrix *A* and each vector v, decide if v is an eigenvector of *A*, and if so, find the eigenvalue λ .

a)
$$\begin{pmatrix} -20 & 42 & 58 \\ 1 & -1 & -3 \\ -1 & 18 & 26 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 3 & 0 \\ -5 & 4 & 2 \\ 3 & 3 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$
c) $\begin{pmatrix} -7 & 32 & -76 \\ 7 & -22 & 59 \\ 3 & -11 & 28 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$
e) $\begin{pmatrix} -3 & 2 & -3 \\ 3 & -3 & -2 \\ -4 & 2 & -3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

12. For each matrix *A* and each number λ , decide if λ is an eigenvalue of *A*; if so, find a basis for the λ -eigenspace of *A*.

a)
$$\begin{pmatrix} -5 & -14 \\ 3 & 8 \end{pmatrix}$$
, $\lambda = 1$ b) $\begin{pmatrix} -5 & -14 \\ 3 & 8 \end{pmatrix}$, $\lambda = -1$
c) $\begin{pmatrix} 2 & 3 & -15 \\ 5 & -7 & 31 \\ 2 & -3 & 13 \end{pmatrix}$ $\lambda = 3$ d) $\begin{pmatrix} 2 & 3 & -15 \\ 5 & -7 & 31 \\ 2 & -3 & 13 \end{pmatrix}$ $\lambda = 2$
e) $\begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & 4 \\ -1 & -1 & 4 \end{pmatrix}$ $\lambda = 2$ f) $\begin{pmatrix} 1 & 1 & -2 \\ -2 & -2 & 4 \\ -1 & -1 & 2 \end{pmatrix}$ $\lambda = 0$
g) $\begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix}$ $\lambda = 7$ h) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\lambda = 0$

13. Suppose that *A* is an $n \times n$ matrix such that Av = 2v for some $v \ne 0$. Let *C* be any invertible matrix. Consider the matrices

a)
$$A^{-1}$$
 b) $A + 2I_n$ **c)** A^3 **d)** CAC^{-1} .

Show that v is an eigenvector of **a**)–**c**) and that Cv is as eigenvector of **d**), and find the eigenvalues.

14. Here is a handy trick for computing eigenvectors of a 2×2 matrix.

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2×2 matrix with eigenvalue λ . Explain why $\begin{pmatrix} -b \\ a - \lambda \end{pmatrix}$ and $\begin{pmatrix} d - \lambda \\ -c \end{pmatrix}$ are λ -eigenvectors of A if they are nonzero.

For which matrices A does this trick fail?

- **15.** a) Show that *A* and A^T have the same eigenvalues.
 - **b)** Give an example of a 2×2 matrix A such that A and A^T do not share any eigenvectors.
 - **c)** A *stochastic matrix* is a matrix with nonnegative entries such that the entries in each column sum to 1. Explain why 1 is an eigenvalue of a stochastic matrix. [**Hint:** show that (1, 1, ..., 1) is an eigenvector of A^T .]
- **16.** a) Find all eigenvalues of the matrix

$$\begin{pmatrix} 1 & -1 & 2 & 3 & 4 \\ 0 & 3 & -1 & -2 & -5 \\ 0 & 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

- b) Explain how to find the eigenvalues of any triangular matrix.
- **17.** Recall that an *orthogonal matrix* is a square matrix with orthonormal columns. Prove that any (real) eigenvalue of an orthogonal matrix Q is ± 1 .
- 18. Give an example of each of the following, or explain why no such example exists.
 - a) An invertible matrix with characteristic polynomial $p(\lambda) = -\lambda^3 + 2\lambda^2 + 3\lambda$.
 - **b)** A 2×2 orthogonal matrix with no real eigenvalues.
- **19.** Suppose that *A* is a square matrix such that A^k is the zero matrix for some k > 0. Show that 0 is the only eigenvalue of *A*.
- **20.** Decide if each statement is true or false, and explain why.
 - a) If v, w are eigenvectors of a matrix A, then so is v + w.
 - **b)** An eigenvalue of A + B is the sum of an eigenvalue of A and an eigenvalue of B.
 - **c)** An eigenvalue of *AB* is the product of an eigenvalue of *A* and an eigenvalue of *B*.
 - **d)** If $Ax = \lambda x$ for some vector x, then λ is an eigenvalue of A.
 - e) A matrix with eigenvalue 0 is not invertible.
 - f) The eigenvalues of A are equal to the eigenvalues of a row echelon form of A.