The Basis Theorem Recall from last time Basis of $\mathbb{R}^n \equiv$ cols of an invertible nxn matrix For an nen matrix, full cot ranked invertible full row rank In terms at colums, n vectors in IR spans IK \Rightarrow linearly independent this is a special case of the basis theorem. Basis Theorem: Let V be a subspace of dim d ¹ If d vectors span V then they're ^a basis (2) It d vectors in V are LI then they're a basis. So it you have the correct number of vectors, you only need to check one of spans LI Eg: . Two noncollinear vectors in a plane for ^a basis I we vectors that span a plane form a basis This is her the Basis Thm makes our intuition precise.

Geometry of Dot Products
\nUse are now aiming to find the "best" approximate
\nsolution of Ax=b when no actual solution exists.
\nEg: find the best-fit ellipse through these points
\nfrom the 12! lecture...
\n(a) How close can Ax get to b?
\n(a) How close can Ax get to b?
\n(a) (A) =
$$
\{Ax : x \in \mathbb{R}^n\}
$$

\nso this means: what is the closest vector b in
\n(a) (A) b b?
\nA: b - b is perpendicular to a (A)
\nIdums]
\nSo we want to understand what vector are
\nperpendicular to a subspace.
\nWe will study the generate no of "perpendicular"
\nusing the algebra of 16t products.
\nRecall: $v = {x_1 \choose 2} \rightarrow v \cdot w = x_1 + x_2 + x_3 = v \cdot \frac{1}{2} \cdot \frac{$

$$
\left(\sqrt{1}_{W} = \left(x_{1} \cdots x_{n}\right)\left(\frac{y_{1}}{y_{n}}\right) = \left(x_{1}y_{1} + \cdots + x_{n}y_{n}\right) = \left(\sqrt{1 + \left(y_{1}y_{1}\right)^{2}}\right)
$$

Def: The distance from $v + v$ is $\|v - v\| = \|v - v\|$ length of $v \sim$ is distance from u to a

Def: A unit vector is a vector of length 1 ie $||v||=1$ ie. $||v|| = v'v = 1$ If $v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ then v is a unit rector $\iff x_i^2$ + + x_i^2 = 1 ^v lies on the unit In ¹ sphere $n=2$: unit cirele, $u \gamma t$ vectors $\frac{u \cdot v}{n}$ \mathbb{R}^3 If $v \neq 0$, the unit vector in the direction of v is the rector $u = \frac{1}{\|v\|} \cdot v = \frac{v}{\|v\|}$ (sabr x vector) $NB: \quad ||u|| = \left| \frac{1}{||u||} \right| \cdot ||u|| = \frac{||u||}{||v||} \cdot 1$

Eq:
$$
v = \begin{pmatrix} \frac{a}{3} \\ \frac{b}{3} \end{pmatrix}
$$
 |v| $t = \frac{\sqrt{3}+4}{\sqrt{5}} = 5$

\nu = $\frac{1}{100}v = \frac{1}{5}(\frac{4}{3}) = (\frac{4}{3}) = (\frac{4}{3})$

\n18: all unit vectors in \mathbb{R}^2 are on the unit circle.

\nWhat about $v \cdot v$ for $v \neq w$?

\nlaw of C_{circle} :

\n $c^2 = a^2 + b^2 - 2ab \cos \theta$

\nVector Version:

\n $(a = ||v|| + b^2||v||^2 - 2||v||/||v||\cos \theta$

\nAlgebra:

\n $(a = ||v|| + b^2||v||^2 - 2||v||/||v||\cos \theta$

\nAlgebra:

\n $\frac{[a + b]}{[a + b]} = ||v - v||^2 = (v - v) \cdot (v - w)$

\n $= |v||^2 + ||v||^2 - 2v \cdot w$

\n $= |v||^2 + ||v||^2 - 2||v||/||v||\cos \theta$

\nNow, $|\frac{[a + b]}{[a + b]} = ||v||^2 + ||v||^2 - 2||v||/||v||\cos \theta$

Def: The angle from $v + w$ (v, wto) is $\Theta := \cos^{-1}\left(\frac{\mathsf{v}\cdot\mathsf{w}}{\|\mathsf{v}\|\|\mathsf{w}\|}\right)$ $NB: \left[cos \theta = \frac{V \cdot W}{\|V\| \|v\|} \in [0,1] \right]$ $\Rightarrow |v \cdot \omega| \le ||v|| \cdot ||\omega||$ Schwartz Inequality: $|v \cdot \omega| \le ||v|| \cdot ||\omega||$ Det: Vectors v and we are orthogonal or perpendicular, written v Lo, 17 r.w= This says that either $r = 0$ or $w = 0$ (or both), or $\frac{v}{\sqrt{2}}$ $C_{5}(\theta)$ =U \iff θ = I'O NB: The zero vector is orthogonal to every vectors $0 \cdot v = 0$ for all v

Orthogonality We want to know "which vectors are 1 a subspace?"

 E_3 : Find all vectors orthogonal to $v=(\begin{pmatrix} 1\\ 1 \end{pmatrix})$ We need to solve $v \cdot x = 0$ $\Leftrightarrow \sqrt{1}x=0$ This is just NulleT) $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $\rightarrow x_1 + x_2 + x_3 = 0$ $8F$
 $X_1 = -X_2 - x_3$
 $X_2 = x_2$
 $X_3 = x_3$ PVP
 $\left(\begin{matrix} -1 \\ 5 \end{matrix}\right) + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ \rightarrow Span $\left\{ \begin{pmatrix} -1 \\ 5 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}$ plane [demo] Check: $\begin{pmatrix} -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0 \quad \begin{pmatrix} -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0 \quad \sqrt{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{$

Find all vectors orthogonal to
$$
y = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \& x_z = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
$$

\nUse need to solve $\{X_1^T \times = 0 \rightarrow X_1^T \times X_2 = 0$

\n
$$
\{y_z^T \times = 0 \rightarrow X_1^T \times X_2 = 0
$$
\n
$$
\{y_z^T \times = 0 \rightarrow X_1^T \times X_2 = 0
$$
\n
$$
\{y_z^T \times = 0 \rightarrow X_1^T \times X_2 = 0
$$
\n
$$
\{y_z^T \times = 0 \rightarrow 0\}
$$
\nUse each $Nd = \begin{pmatrix} v_y^T v_x \\ -v_x^T v_y \end{pmatrix} = Nu \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

\n
$$
\{1, 1, 0\} \text{ } \{1, 0
$$

$$
NB: \n\mathbb{R} \times Lv_i \text{ and } x+y_z \text{ then}
$$
\n
$$
x·(av+bvz) = axv + b x·x_z = a·O + b·O = 0
$$
\n
$$
50 \times 5 \text{ orthogonal to every vector in}
$$
\n
$$
5\rho a n \{v_i, v_z\}
$$
\n
$$
[demo \text{ again}]
$$
\n
$$
More generally,
$$
\n
$$
\left\{ ve R^n : bo \text{ even vector} \atop in \text{Span} 3v_{v-v}vn_3 \right\} = Nu \begin{pmatrix} -v_1^T - \\ \vdots \\ -v_n^T - \end{pmatrix}
$$
\n
$$
Tk_3^T B \text{ aukrard to } x_2v - |dz| \text{ give it a name.}
$$
\n
$$
Def: let V be a subspace of R^n.
$$
\n
$$
The \text{ of the normal complement of } V \text{ is}
$$
\n
$$
V^{\perp} = \{ w \in R^n : \text{nonlinear of } V \text{ is}
$$
\n
$$
V^{\perp} = \{ w \in R^n : \text{nonlinear of } V \text{ is}
$$
\n
$$
v \neq 0 \text{ where } m \text{ is orthogonal to}
$$
\n
$$
v \neq 0 \text{ if } R^n \text{ is orthogonal to } x \text{ and } x \text{ is independent of } x \text{ subject}
$$
\n
$$
r \neq 1 \text{ if } x \text{ the orthogonal complement of } x \text{ subject}
$$

NB: If
$$
x \ge x
$$
 both V and V¹ then x \ge
orthogonal to itself:
 $x \cdot x = 0 \Rightarrow x = 0$, so $VDV^{\perp}=\{0\}$

F

(a) Let
$$
x \in V^+
$$
, c \in \mathbb{R}. So $x \vee = 0$ for every $v \in V$.

\n(b) $(cx) \cdot v = c(x \cdot v) = c(0) = 0$ for every $v \in V$.

\n(c) $0 \cdot v = 0$ for every $v \in V^+$.

\n(d) $0 \cdot v = 0$ for every $v \in V$ and $v \in V^+$.

\n(e) $0 \cdot v = 0$ for every $v \in V$.

\n(f) $0 \cdot v = 0$ for every $v \in V$.

\n(g) $0 \cdot v = 0$ for every $v \in V$.

\n(h) $0 \cdot v = 0$ for every $v \in V$.

\n(i) $0 \cdot v = 0$ for every $v \in V$.

\n(j) $0 \cdot v = 0$ for every $v \in V$.

Facts: Let V be a subspace of
$$
\mathbb{R}^n
$$
.
\n(1) $d_{im}(V) + dim(V^{\perp}) = n$ [dens]
\n(2) $(V^{\perp})^{\perp} = V$ [dens]

 $NB: (2)$ says V and V^+ are orthogonal complements of each other. Subspaces come in orthogonal complement pairs.

Orthogonality of the Four Subspaces Recall : Il someone gives you a subspace, Step 0 is to write it as a column space or a null space. So we want to understand $Col(A)^{\perp}$ & Null $(A)^{\perp}$. Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ Then $Col(A)^{\perp} = \text{Span}\{v_1, v_2v_n\}^{\perp} = \text{Null}\left(\frac{-v_1^{\top} - v_2^{\top}}{-v_n^{\top} - v_n^{\top}}\right) = \text{Null}(A^{\top})$ $C_0(A)^{\perp} = N_0(A^{\top})$ Take $(-)^{2}$ Col (A) = $(Co(A)^{1})^{2}$ = Nal (AT)¹ Row $(A) = C_0(A^T) = N_0(1)A$ P^{λ} H_{1} and $\text{Res}(A)^{\perp} = \text{Null}(A)$ Orthogonality of the Four Subspaces:
 $C_0((A)^+ = N u((A^T) - N u)(A^T)^+ =$ $C_0(A)^+ = N \omega(A^T)$
 $N \omega(A)^+ = R \omega \omega(A)$
 $R \omega(A)^+ = N \omega(A)$ $R_{\infty}(A)^+=N_{\infty}(A)$

This says the two now picture subspaces $Row(A)$ Nul (A) are orthogonal complements, L the two column picture subspaces $G(A)$, $Null(F)$ are orthogonal complements $E_{g}: V = \{x \in \mathbb{R}^{3}: \frac{x+2y}{x+y+z=0}\}$. Find a basis for V^+ Step Os V = Nul $\begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ \rightarrow V + = Rav $\begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ $V^{\perp} = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$: no chinination needed! E_8 : $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ $\left(\begin{array}{cc} 1 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{array}\right) \longrightarrow \left(\begin{array}{cc} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right)$ $\sim N$ wl(A) = Span { $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ Nul(AT) = Span { $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$
Col(A) = Span { $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Rev(A) = Span { $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$? $C_1(A) = \sum_{\alpha} a_{\alpha} \{(\alpha) \}$ Row Picture Column Picture $R_{\text{out}}(A)$ (ed (R_{out})) NullAt $\vec{\bm{\times}}$ Rould)