The Basis Theorem Recall from last time: cols of an inventible nxn matrix Bousit of Rⁿ = For an nxn matrix, full col rank => invertible => full raw rank In terms of columns, n vectors in IRⁿ Spans IRⁿ => linearly independent this is a special case of the basis theorem. Basis Theorem: Let V be a subspace of dim d (1) If d vectors span V then they're a basis (2) IF d vectors in V are LI then they're a basis. So if you have the correct number of rectors, you only need to check one of spans/LI. Eg: • Two noncollinear vectors m a plane • Two vectors that span a plane form a basis. This is how the Basis The makes our intuition precise.

$$\left(v^{T}w = \left(x_{1} \cdots x_{n}\right) \begin{pmatrix} y_{1} \\ y_{n} \end{pmatrix} = \left(x_{1}y_{1} + \cdots + x_{n}y_{n}\right) = \left(v \cdot \omega\right)\right)$$

Dot products measure length & angles - les 90°)
> geometric questions about length & angles
become algebraic questions about length & angles
become algebraic questions about length & angles
Recall: If
$$v = (x_1 x_2 \dots y_n) \in IR^n$$
 then
 $v \cdot v = x_1^2 + x_2^2 + \dots + x_n^2 \ge 0$
Def: The length of v is
 $||v|| = \int v \cdot v^{-1}$ ie $||v||^2 = v \cdot v$
This makes serve by the
Pythagorean theorem: $v = (\frac{4}{3})$
 $||v|| = \int (\frac{v}{x_1})|| = ||\binom{cx_1}{cx_n}|| = \int (cx_1)^2 + \dots + l(cx_n)^2$
 $= |c| \cdot \int x_1^2 + \dots + x_n^2 = |c| \cdot ||v||$
 $||cv|| = |c| \cdot ||v||$
Eq: $2v$ is twize as long as v .
So is $-2v$.

Def: The distance from v to w is I v-wll=lw-vl v-we length of v-wis distance from u to w

Def: A unit vector is a vector of length 1. ie $\|v\| = 1$ ie. $\|v\|^2 = v \cdot v = 1$ If $v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ then v is a unit vector $\implies x_{i}^{2} + \cdots + x_{n}^{2} = 1$ V lies on the unit (n-1)-sphere (n=2: unit cirele)
unit vectors
n R²
N R² If v+O, the unit vector in the direction of v is the vector $u = \frac{1}{\|v\|} \cdot v = \frac{v}{\|v\|} \quad (satur \times vector)$ N3: $\|u\| = \left| \frac{1}{\|v\|} \right| - \|v\| = \frac{\|v\|}{\|v\|} = 1$

Eq:
$$V = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 $\|V\|| = \sqrt{3^{3}+4^{3}} = 5$
 $u = \int_{|V||}^{1} V = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 4/5 \\ 3/5 \end{pmatrix}$

NB? all unit vectors in
IR² are on the unit
 $Ure to the total tota$

Def: The angle from v to w (v, w to) is $\Theta := \cos^{-1}\left(\frac{\sqrt{2}}{|1||1|}\right)$ $\Rightarrow |v \cdot w| \leq ||v|| \cdot ||w||$ Schwartz Inequality: /v·w/ < // Def: Vectors v and w are orthogonal or perpendicular, written vLw, it vw=0 This says that either: • r=0 or w=0 (or both), or $\sqrt{90^{\circ}}$ • $c_{5}(\theta)=0 \iff \theta=\pm 90^{\circ}$ NB: The zero vector is orthogonal to every vectors 0.v=0 for all v

Orthogonality We want to know: "which vectors are I a subspace?" Let's start with: "which vectors are I some vector?"

Eq: Find all vectors orthogonal to v=(i)We need to solve V·X=0 $\Rightarrow \gamma^T x = 0$ This is just Nul(VT): $\begin{bmatrix} 1 & 1 \end{bmatrix} \longrightarrow X_1 + X_2 + X_3 = 0$ $\begin{array}{ccc} X_1 = -X_2 - X_3 \\ Y_2 = & X_2 \\ X_3 = & X_3 \end{array}$ $\frac{PVP}{\swarrow} \chi = \chi_2 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + \chi_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ \rightarrow Span $\left\{ \begin{pmatrix} -i \\ j \end{pmatrix}, \begin{pmatrix} -i \\ i \end{pmatrix} \right\}$ plane [Jemo] Check: $\begin{pmatrix} -i \\ 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ 1 \end{pmatrix} = 0$ $\begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} i \\ 1 \end{pmatrix} = 0$

Est Find all vectors orthogonal to
$$v_{i} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \& v_{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

We need to solve $\{V_{i}^{T}, X = 0, X_{i} + X_{i} = 0\}$
Equivalently, $\begin{pmatrix} -v_{i}^{T} - \\ -v_{i}^{T} - \end{pmatrix} \cdot X = \begin{pmatrix} v_{i} \cdot X \\ v_{i} \cdot X \end{pmatrix} = 0$
So we want $Nul \begin{pmatrix} -v_{i}^{T} - \\ -v_{i}^{T} - \end{pmatrix} = Nul \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $p_{F} = X_{2} = X_{2}$
 $X_{3} = 0$
 $PVF = X_{2} = X_{2}$
 $X_{3} = 0$
 $PVF = X_{2} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$
 $-y_{i} = -X_{2}$
 $X_{3} = 0$
 $PVF = X_{2} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$
 $-y_{i} = \sum_{i=1}^{n} \sum$

F

$$Span \{V_{1}, \dots, V_{n}\}^{\perp} = Nul \begin{pmatrix} -v_{n}^{T} - \\ \vdots \\ -v_{n}^{T} - \end{pmatrix}$$

$$Fg: V = Span \{\{i\}\}^{T} \Longrightarrow V^{\perp} = Nul \begin{pmatrix} i & i & i \end{pmatrix}$$

$$Fg: V = Span \{\{i\}, \{i\}\}^{T} \Longrightarrow V^{\perp} = Nul \begin{pmatrix} i & i & i \end{pmatrix}$$

$$Fg: V = Span \{\{i\}, \{i\}\}^{T} \Longrightarrow V^{\perp} = Nul \begin{pmatrix} i & i & i \end{pmatrix}$$

$$Fg: V = Span \{\{i\}, \{i\}\}^{T} \Longrightarrow V^{\perp} = \{o\}$$

$$Fact: V^{\perp} = R^{n} \qquad (R^{n})^{\perp} = \{o\}$$

$$Fact: V^{\perp} = R \text{ odso } a \text{ subspace of } R^{n}.$$

$$Check:$$

$$(1) Let x, y \in V^{\perp}. So \quad x: v = 0 \text{ and } y: v = 0 \text{ for } every \quad v \in V. So \quad (x+y) \cdot v = x: v + y: v = 0 + 0 \text{ for } every \quad v \in V \longrightarrow x + y \in V.$$

Facts: Let V be a subspace of
$$\mathbb{R}^n$$
.
(1) $\dim(V) + \dim(V^{\perp}) = n$ [denos]
(2) $(V^{\perp})^{\perp} = V$

NB: () says V and V⁺ are orthogonal complements of each other. Subspaces come in orthogonal complement pairs.

Orthogonality of the Four Subspaces Recall: If someone gives you a subspace, Step O is to write it as a column space or a null space. So we want to understand $Col(A)^{\perp} \& Nul(A)^{\perp}$ Let $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$. Then $Col(A)^{\perp} = Span \{v_{1,\ldots,v_n}\}^{\perp} = Nul\left(-\frac{v_1^{\top}}{-v_n^{\top}}\right) = Nul(A^{\top})$ $(\mathcal{A})^{\perp} = \mathcal{N}_{\mu}(\mathcal{A}^{\mathsf{T}})$ Take $(-)^{\perp}$ $Col(A) = (Col(A)^{\perp})^{\perp} = Nol(A^{\perp})^{\perp}$ repare A by AT $Row(A) = Col(AT) = Nul(A)^{L}$ repare A and Row (A) = NullA) Orthogonality of the Four Subspaces: $(A)^{+} = Nul(A^{T})$ $N_{u}(A^{T})^{\perp} = C_{u}(A)$ $R_{out}(A)^{+} = Nul(A)$ Nul(A)¹ = Row(A)

This says the two row picture subspaces Row(A), Nul(A) are orthogonal complements, & the two column picture subspaces Col(A), Nul(AT) are orthogonal complements. Eg: V= {x+R3: x+2y=2 }. Find a basis for V1. Step Θ : $V = N_u \left(\begin{pmatrix} 1 & 2 & -i \\ 1 & i \end{pmatrix} \rightarrow V^{\perp} = R_{\Theta U} \left(\begin{pmatrix} 1 & 2 & -i \\ 1 & i \end{pmatrix} \right)$ $V^{\perp} = \text{Span} \left\{ \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} : no elimination needed!$ $E_a: A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & | 1 & 0 \\ 1 & 2 & | 0 & | \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & | 1 & 0 \\ 0 & 0 & | -1 & 1 \end{pmatrix}$ $\sim Nul(A) = Span \left\{ \begin{pmatrix} -2 \\ i \end{pmatrix} \right\}$ $Nul(A^T) = Span \left\{ \begin{pmatrix} -1 \\ i \end{pmatrix} \right\}$ Row(A) = Span ? (2)? $G(A) = Span \{(i)\}$ Column Picture Row Picture Rould) Mullaj Nul(AF) (cal(A)