Properties of Orthogonal Projections

\nRecall: if V is a subspace of IR' and b=R'',
\nb = Ly + byL
\nis its orthogonal decomposition with respect to V.

\nby = orthogonal projection of b onto V'

\n= closest vector in V to b

\nby = orthogonal projection of b onto V'

\n= closest vector in V' to b

\nThe distance from b to V' is

\n
$$
||b-bv|| = ||b v u||
$$

\nIdemos]

Properties of Projectons:

\n(1)
$$
b_v = b \Leftrightarrow bv = 0 \Leftrightarrow bcV
$$

\n(2) $b_v = 0 \Leftrightarrow b = b_{v+} \Leftrightarrow b \in V^{\perp}$

\n(3) $(b_v)_v = b_v$

(1)
$$
5a_{35}
$$

\n(2) $5a_{35}$

\n(3) $5a_{35}$

\n5. $15a_{35}$ and $15a_{35}$

\n6. $15a_{35}$ and $15a_{35}$

\n7. $15a_{35}$ and $15a_{35}$

\n8. $11b_{35}$ and $15b_{35}$

\n9. $11b_{35}$ and $15b_{35}$

\n10. $5ac_{35}$ and $15b_{35}$

\n11. $13b_{35}$

\n12. $5a_{35}$

\n13. $5a_{35}$

\n14. $11b_{35}$ and $15b_{35}$

\n15. $5a_{35}$

\n16. $11b = (2)$ by $15b_{35}$

\n17. $11b_{35}$ and $15b_{35}$

\n18. $5a_{35}$

\n19. $11b_{35}$

\n110. $11b_{35}$

\n12. $5a_{35}$

\n13. $5a_{35}$

\n14. $11b_{35}$

\n15. $5a_{35}$

\n16. $11b_{35}$

\n17. $11b_{35}$

\n18. $5a_{35}$

\n19. $11b_{35}$

\n110. $11b_{35}$

\n12. $11b_{35}$

\n13. $5a_{35}$

\n14. $11b_{35}$

\n15. $5a_{35}$

\n16. $11b_{35}$

\n17. $$

Eg: last time if
$$
b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$
 $V = C_{0} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
\nthen we computed $b_{V} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, so we should
\nhau $b \in V$. Let's check:
\n $\begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} xy \\ y \end{pmatrix} = \begin{pmatrix} xy \\ x \end{pmatrix} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} + xy = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$
\nTaking $x_{3} = 0$ gives a solution of the vector eqⁿ:
\n $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$
\nSo $b = 3$ undefined in $V = C_{0} \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

Projection Matrices

Recall: IF V=GI(A) then you compute by
\nus follows:
\n(1) Solve the normal equation
$$
AX=ATb
$$

\n(2) by= $A\hat{x}$ for any solution \hat{x} .
\nLemma: A has full column rank if \hat{a} only if
\n $ATA \equiv invertide$.
\n*Proof:* Note $ATA \equiv square$.
\n $A has FCR$
\n $\Leftrightarrow Null(A) = \{0\}$ (FQR criteria)
\n $\Leftrightarrow Null(A) = \{0\}$ (IQR criteria)
\n $\Leftrightarrow ATA \Rightarrow FGR$ (FGR criteria)
\n $\Leftrightarrow ATA \Rightarrow FGR$ (FGR criteria)
\n $\Leftrightarrow ATA \Rightarrow True+ible$ (meribility often)
\n $\hat{x} = (ATA)^TATb$ s, by= $A\hat{x} = A(ATA)A^Tb$.

If A has FCR and V=6(M) then

$$
b_v = A(A^T A)^T A^T b
$$
.

Eg: V =
$$
Col(A) A = \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}
$$

\n $A^TA = \begin{pmatrix} 1 & 1 & 0 \ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \ 2 & 2 \end{pmatrix}$
\n $(A^TA)^{-1} = \frac{1}{6-4} \begin{pmatrix} 2 & -2 \ -2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \ -1 & 3/2 \end{pmatrix}$
\n $A(A^TA)^{-1}A^T = \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \ -1 & 3/2 \end{pmatrix} \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}$
\n $= \begin{pmatrix} 0 & 1/2 \ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 0 \ 1/2 & 1/2 & 0 \ 0 & 0 & 1 \end{pmatrix}$
\nSo A^T b = $\begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}$ then
\n $b_T = \begin{pmatrix} 1/2 & 1/2 & 0 \ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \ 0 \ 0 \end{pmatrix}$
\n $= \begin{pmatrix} 0 & 1/2 \ 0 & 1/2 \ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \ 0/2 \ 0 \end{pmatrix}$
\n $= \begin{pmatrix} 0 & 1/2 \ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \ 0 \ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \ 0/2 \ 0 \end{pmatrix}$
\n $= \begin{pmatrix} 0/2 & 1/2 \ 1/2 & 1/2 \ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \ 0 \ 0 \$

Def: Let V be a subspace of
$$
\mathbb{R}^n
$$
. The projection matrix onto V is the maximum matrix. P_V such that $P_V b = b_V$ for all $b \in \mathbb{R}^m$.

\nNB: The matrix P_V is defined by the equality for all vectors b. This uniquely characterizes P_V by the Euler algebra. Use the above equation to answer questions about P_V ! (This is the first time we're defined a matrix by its action on \mathbb{R}^m .)

Fact: If A & B are men matries and $Ax = Bx$ for all x , then $A = B$.

Indeed, $Ae = i\frac{\pi}{4}$ col of A_2 so actually a matrix is determined by its action on the unit coordinate vectors

What if $V = Col(A)$ but A does not have full column rank? How to compute Pv?

Eg: V=6/(A)
$$
A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & \frac{1}{2} \end{pmatrix}
$$

\nThis A does not have full column rank:
\n $A = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ plus
\nThis says that $\begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ is a basis
\nfor V. This means:
\n(1) V=Span $\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$
\n(2) $\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ has full column rank.
\nSo replace A by B= $\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$:
\n $B^T B = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 3 \end{pmatrix}$
\n(B^T B)⁻¹= $\begin{pmatrix} 1/6 & 0 \\ 0 & 1/3 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

$$
P_{v} = B(B^{T}B)^{-1}B^{T} = \frac{1}{6} \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & -1 \end{pmatrix}
$$

\n
$$
= \frac{1}{6} \begin{pmatrix} 1 & -2 \\ 2 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & -1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 3 & 0 & 3 \\ 0 & 6 & 0 \\ 3 & 0 & 3 \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} V_{2} & -1/2 \\ 0 & 1 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} V_{2} & -1/2 \\ 0 & 1 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0/2 & 0 & 1/2 \\ V_{2} & 0 & V_{2} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1/2 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \\ V_{2} & 0 & V_{2} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 &
$$

E
\nE
\nE
\n
$$
V = Span\{(1)\}
$$

\n $P_v = \frac{1}{(1)(1)} (1)(11) = \frac{1}{2} (\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}) = (\begin{matrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{matrix})$
\n S_o if $b = (\begin{matrix} 1 \\ 0 \end{matrix})$ then $bx = Rb = (\begin{matrix} 1/2 \\ 1/2 \end{matrix})$ (c) L11)

(1) Find a basis
$$
\{v_1, ..., v_n\}
$$
 of V
\n(2) $B = (v_1 \cdots v_n)$ For example, if
\n(3) $P_v = B(B^TB)^{-1}B^T$ use the product columns
\n E_g : Suppose $V = S_{par} \{v\}$ is a line.
\n $B=v$ (matrix with one column)
\n $B(B^TB) = v \cdot v$ (a scalar)
\n $B(B^TB)^{-1}B^T = v(v \cdot v)^{-1}v^T = \frac{vv^T}{v \cdot v}$

Procedure for Computing R.:

Properties of Projecton Matrices:	
Let V be a subspace of RN and let R	
be its projection matrix.	
(1) $G_1(P_v) = V$	(3) $P_v^2 = R_v$
(2) $N_u I(P_v) = V^{\perp}$	(4) $P_v + P_{v^{\perp}} = \mathbb{I}_m$
(5) $P_v = P_v^{\top}$	
(6) $P_{IR} = \mathbb{I}_m$	(7) $P_{is} = O$
Recall: A (square) matrix S is symmetric of S=S	
Proofs of the Properties:	
This is a translation of properties of projects:	
(1) $G_1(P_v) = fR_v : b \in R^m$?	= {b_v : b \in R^m}
(1) $G_2(P_v) = fR_v : b \in R^m$?	= {b_v : b \in R^m}
Exercise 4) F_v any b_v	
and $b_v = b$ for any $b \in V$.	
(2) $N_u I(P_v) = \{bc \in R^m : p_v b = O\}$	= {bcR^m : b_v = O}?
But we know $b_v > O$ (the V ²).	

(3) For any vector b,
\n
$$
P_v^2 = P_v(P_v b) = P_v(b_v) = (b_v)_v
$$
\n
$$
T_{hs}
$$
\nequals by because $b_v \in V$ already

\n
$$
= b_v = Rv b
$$
\nSince $P_v^2 b = Rv b$ for all vectors b, $P_v^2 = P_v$.

\n(4) For any vector b,
\n
$$
(P_v \in R_v b) = Rv b + R_v b = b_v + b_v b
$$
\n
$$
= b - \sum_{v} b
$$
\nSince $(R_v + P_v b) = T_{\text{in}} b$

\n
$$
= b - \sum_{v} b
$$
\nSince $(R_v + P_v b) = T_{\text{in}} b$ for all vectors b,
\n
$$
P_v + P_v b = T_{\text{in}}
$$
\n(5) Choose a basis for $V \rightarrow P_v = B(Pv b^c)B^T$

\n
$$
= B(v^2 - v^2)B^T
$$
\n
$$
= B((Bv^2 - v^2)^T)B^T = B(v^2 - v^2)B^T = P_v
$$

6 For any invertible matrix A,
\n
$$
(A^{-1})T = (A^{T})^{-1}
$$
 because
\n $(A^{-1})T + A^{T} = (AA^{-1})T = LT = T$,
\n $(6) \text{IF } V=IR^{n}$ then beV for all b, so
\n $R_{V} b = b_{V} = b$ for all b.
\nAlso $T_{r}b = b_{r}b_{r}$ and b, so $R_{r} = T_{r}$.
\n $(7) \text{IF } V=583$ then $R_{V}b$ must be O for every
\nb, because O is the only vector in V:
\n $R_{V}b = b_{V} = 0$ for all b.
\n $A_{S0} 0b = 0$ for all b, so $R_{V} = 0$.

Let the number if
$$
V = N_u(A)
$$
, we computed by by
\nfirst computing the projection onto $V^{\perp} = G/(At)$,
\nthen using $b_v = b - b_v$.

We can do the same for projection matrices, us_{wd} \sim

Product: To compute
$$
P_v
$$
 for $V = N_v(A)$:

\n(1) Compute P_vL for $V^2 = C_v(A^T)$

\n(2) $P_v = Im - P_vL$

\n
$$
E_v
$$
 Compute P_v for $V = N_u(A \mid 2 + 1)$.

\nThus $cos \theta$, $V^{\perp} = C_v(A^T)$

\n
$$
P_{vL} = \frac{1}{(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2} + 1)} = \frac{1}{6} \left(\frac{1}{2} + \frac{2}{2} + \frac{1}{2}\right)
$$
\n
$$
P_{vL} = \frac{1}{(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2} + 1)} = \frac{1}{6} \left(\frac{2}{2} + \frac{1}{2}\right)
$$
\n
$$
P_{vL} = \frac{1}{(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2} + 1)} = \frac{1}{6} \left(\frac{5}{2} - \frac{2}{2} - \frac{1}{2}\right)
$$
\nThus $cos \theta$ much easier than finding α beak for V using Pr , then $cos \theta$ Pr = β ($8^TB)^{-1}B^T$.

\n
$$
X_1 = -2X_2 - X_3 \implies Y_2 = X_3 \implies Y_3 = X_2 \implies Y_4 = X_3 \implies Y_5 = X_4 \implies Y_6 = \frac{1}{6} \left(\frac{1}{2} - \frac{1}{2}\right)
$$
\nThus $|8^TB|^{-1} = \frac{1}{(2 - \frac{1}{2})}$

\n
$$
E = \begin{pmatrix} -2 & -1 \\ 3 & 0 \end{pmatrix} \implies E^TB = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}
$$
\nThus $|8^TB|^{-1} = \frac{1}{(2 - \frac{1}{2})} = \frac{1}{6} \left(\frac{2}{2} - \frac{2}{5}\right)$

\n
$$
E = \begin{
$$

$$
= \frac{1}{6} \begin{pmatrix} -2 & -1 \\ 2 & -2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}
$$

$$
= \frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}
$$

Be intelligent about what you actually have to compute! Ask yourself: "is it easier to compute Vu or Pus