Orthogonal Bases Last time we found the best approximate soln of $Ax = b$ using least squares. New we turn to computational considerations. The goal κ the QR decomposition. U makes solving QR makes least El $Ax = b$ fast | Solving $Ax = b$ fast ("fast" means: no elimination necessary) The basic idea is that projections are easier when you have a basis of orthogonal vectors. Def: A set of nonzero vectors $\{u_{ij}$, un $\}$ is: (i) orthogonal if $u_i \cdot u_j = O$ for $i \neq j$ ² orthonormal if they're orthogonal and $u:u=1$ for all i (unit vectors). Let $Q = \begin{pmatrix} d_1 & d_2 \\ d_3 & d_4 \end{pmatrix}$, so $Q^TQ = \begin{pmatrix} u_1 \cdot u_1 & u_1 \cdot u_2 & \cdots \\ u_2 \cdot u_2 & u_2 & \cdots \end{pmatrix}$. (1) $\{u_{i_1}\cdot\cdot\cdot u_{n}\}$ is orthogonal \iff QTQ is diagonal (& muentible) tall nonzero entries are on the diagonal (2) {u, ..., un} is orthonormal ϵ ∞ Q TQ = T_n

Fact:

\nLet
$$
5u_{u-1}w_13
$$
 be an orthogonal set and
\nlet $Q = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{12} \end{pmatrix}$. Then $5u_{u-1}w_13$ is
\n $\begin{vmatrix} \text{linearly independent.} & \text{Equivalently, } Q & \text{has} \\ \text{full column rank.} \end{vmatrix}$

\nThis means $5u_{u-1}w_13$ is a basis for $5u_15w_1w_1$.

\nThus means $5u_{u-1}w_13$ is a basis for $5u_15w_1w_1w_13$.

\nProof:

\n $Q = 0$: $u_i = \begin{pmatrix} x_1u_1u_1 + x_2u_1u_1u_1 \\ x_1u_1u_1 + x_2u_1u_1u_1 \\ x_2u_1u_1 + x_2u_1u_1u_1 \\ x_2u_1u_1u_1 + x_2u_1u_1u_1 \\ x_2u_1u_1u_1 + x_1u_1u_1u_1 + x_1u_1u_1u_1 \end{pmatrix}$

\nUse the $4u_1u_1 + \frac{b_1u_1}{u_1u_1}u_1 + \frac{b_1u_1}{u_1u_1}u_1 + \frac{b_1u_1}{u_1u_1}u_1$

\nHere, $4u_1u_1 + u_1u_1u_1 + u_1u_1u_1 + u_1u_1u_1 + u_1u_1u_1u_1$

\nHere, $4u_1u_1 + u_1u_1u_1 + u_1u_1u_1 + u_1u_1u_1 + u_1u_1u_1u_1 + u_1u_1u_1u_1 + u_1u_1u_1u_1$

$$
108 \text{ m} = 1 \text{ cm} \cdot \text{g} \cdot \text{g} \cdot \text{projection} \quad \text{or} \quad \text{a. line} \quad \text{h} = \frac{b \cdot v}{v \cdot v} \text{V}
$$
\n
$$
108 \text{ m} = 1 \text{ cm} \cdot \text{g} \cdot \
$$

Projection Matrix Outer Product Form Let un ^e un be an orthogonal set and let V Span un sun Then a ^t ^t ^t NB ⁿ ^l us get projection onto ^a lone Pp II NB outer product forms of matrices will be ^a key part of the SVD Proof unit III ^t ^t ^b This is the defining property of Pr hitbut^b ^t Yuan lui ^b if at ^t un un bu b Ig Find Pr for V Span Pry I ^s ft E In ^a ^D 1 1 1

New we consider orthonormal vectors. Facts: Let $\{v_1, v_2\}$ be an orthonomal set and let $Q = (v, -v)$ $(1) Q^{T}Q = I_{n}$ (2) $(0x)$ $(0y) = x-y$ for all $x,y \in \mathbb{R}^n$ (s) $||Qx|| = ||x||$ for all $x \in \mathbb{R}^n$ (4) Let $V = S_{\rho u} \{v_{v-1}, v_{n}\} = Col(Q)$. Then

 $P_r = QQ^T$ $x y = |x| \cdot |y| \cdot cos \theta$ NB: (2) says (a.) does not change angles. (3) says (a.) does not change lengths.

 P_{roob} : (1) of $p.1$ (2) (αx) $(\alpha y) = (\alpha x)^{T} \alpha y = x^{T} \alpha y = x^{T} \alpha y$ (3) $||Qx|| = |(Qx)(Qx)^{1/2}| = |x^2| = ||x||$ (4) $P_v = Q(QTO)^{-1}QT = Q(T) - QT = QQT$

Find
$$
P_{\theta}
$$
 for $V = \text{Span } \{ (\frac{1}{2}, \frac{1}{2}) \}$

\nThus, $\text{has an arthonormal basis } \frac{1}{2} \{ (\frac{1}{2}, \frac{1}{2}) \} \leq \frac{1}{2}$

\n $Q = \frac{1}{2} (\frac{1}{2} - \frac{1}{2})$

\n $P_{\theta} = Q Q^T = \frac{1}{4} (\frac{1}{2} - \frac{1}{2}) (\frac{1}{2} + \frac{1}{2} - \frac{1}{2})$

\n $= \frac{1}{4} (\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}) = \frac{1}{2} (\frac{1}{2} - \frac{1}{2} - \frac{1}{2})$

\nThe projection formula is easier with no denominators:

\nRefer. $\text{Formula: } \frac{1}{2} = \text{var} \text{ which is a real number of integers.}$

\nLet $\{v_{\theta} \leq v_{\theta} \leq v_{\theta} \text{ which is a real number of integers.}$

\nLet $\{v_{\theta} \leq v_{\theta} \leq v_{\theta} \text{ which is a real number of integers.}$

\nLet $\{v_{\theta} \leq v_{\theta} \leq v_{\theta} \text{ which is a real number of integers.}$

\nLet $V = \text{Span } \{v_{\theta} \leq v_{\theta} \leq v_{\theta} \text{ which is a real number of integers.}$

\nFor any vector θ , we have:

\n $b_{\theta} = (b_{\theta}v_{\theta})v_{\theta} + (b_{\theta}v_{\theta})v_{\theta} + \dots + (b_{\theta}v_{\theta})v_{\theta}$

Moreover $\frac{1}{p_v} = v_v v_v^T + v_s v_s^T + \cdots + v_n v_n^T$

Def: A square matrix with orthonormal columns

\nis called orth general.

\n1. Note the straight seminology?

\n2. Why is
$$
P_{V} = QQ^{T} = T_{V}
$$
 in this case?

Gram-Schmidt

\nGiven that projections are easier to compute in an orthogonal basis, how do we produce one?

\n130a: Start with any basis
$$
5^{v_0} \rightarrow v_0
$$
?

\n\n- make $v_2 \perp v_1$ by replacing with $(v_2)v_1$
\n- make $v_2 \perp v_1$ by replacing with $(v_2)v_1$
\n- make $v_3 \perp v_1, v_2$ by replacing with v_1
\n- make $v_3 \perp v_1, v_2$ by replacing with v_1
\n- make $v_3 \perp v_1, v_2$ by replacing with v_1
\n- with $(v_3)v_2$ for $V_2 = \{\text{var}_1, \text{var}_1, \text{var}_2\}$
\n- etc.\nThis "straightens out" The basis vectors one of a three.

\nNB: (v_3)v_2 is easy to compute w/pricient formula!

Pracelure	$(G_{T0M} - S_{dr1}/d)$	
Let $f_{V_{U-1},V_{U}} \in V_{1}$ be a basis for a subspace V .		
(1) $u_{1} = v_{1}$	$u_{1} \cdot k_{1}$	$u_{2} \cdot k_{2} \cdot k_{3} \cdot k_{4} \cdot k_{5}$
(2) $u_{2} = v_{2} - \frac{u_{1} \cdot k_{2}}{u_{1} \cdot u_{1}} u_{1} - \frac{u_{2} \cdot k_{3}}{u_{2} \cdot u_{2}} u_{2} - (v_{2})v_{2}^{2} - (v_{2}^{2} - v_{1}^{2}v_{3})v_{2}^{2}$		
(3) $U_{3} = V_{3} - \frac{u_{2} \cdot v_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{u_{2} \cdot v_{2}}{u_{2} \cdot u_{1}} u_{2} - (v_{3})v_{2}^{2} - (v_{3}^{2} - v_{1}^{2}v_{3})v_{2}^{2}$		
1) $u_{1} = v_{1} - \frac{u_{2} \cdot v_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{u_{2} \cdot v_{2}}{u_{2} \cdot u_{1}} u_{2} - \cdots - \frac{u_{n-1} \cdot v_{n}}{u_{n-1} \cdot u_{n}} u_{n-1}$		
1) $u_{2} = (v_{1} - v_{1}^{2} - v_{1}^{2}v_{1}^{2}) - (v_{1}^{2} - v_{1}^{2} - v_{1}^{2}v_{2}^{2}) - (v_{1}^{2} - v_{1}^{2} - v_{1}^{2}v_{1}^{2}) - (v_{1}^{2} - v_{1}^{2} - v_{1}^{2}v_{2}^{2}) - (v_{1}^{2} - v_{1}^{2} - v_{1}^{2}v_{2}^{2}) - (v_{1}^{2} - v_{1}^{2} - v_{1}^{2}v_{2}^{2}) - (v_{1$		

Q: What if
$$
\{v_{1},...,v_{n}\}
$$
 is linearly dependent?
Then eventually $v_{i} \in Span\{v_{1},...,v_{i-1}\} = \{v_{i}\}_{i=1}^{N_{i-1}-1}$
 $v_{i} \in V_{i-1} = \{v_{i}\}_{i=1}^{N_{i-1}-1}$
 $\{v_{i}\} = \{v_{i}\}_{i=1}^{N_{i}} = O$
Thus is ok! Just already if & continuous.

QR Decomposition This "keeps track" of the Gram-Schmidt procedure
in the same wey that LU keeps track of

Start with a basis $\{v_{i_1-1}v_{n}\}$ of a subspace & run Gram-Schmidt. Then

Salve for vi's in terms of ui's:

$$
V_{1} = \frac{V_{2}U_{1}}{V_{1}U_{1}}U_{1} + U_{2}
$$
\n
$$
V_{2} = \frac{V_{2}U_{1}}{V_{1}U_{1}}U_{1} + U_{2}
$$
\n
$$
V_{3} = \frac{V_{2}U_{1}}{V_{1}U_{1}}U_{1} + U_{2}U_{2} + U_{3}
$$
\n
$$
V_{4} = \frac{V_{1}U_{1}}{V_{1}U_{1}}U_{1} + U_{2}U_{2} + U_{3}
$$
\n
$$
V_{5} = \frac{V_{1}U_{1}}{V_{1}U_{1}}U_{1} + U_{2}U_{3}
$$
\n
$$
V_{6} = \frac{V_{1}U_{1}}{V_{1}U_{1}}U_{1} + U_{3}
$$

Matrix Form $\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$ $V_{\mathbf{r}}(u)$ $M'M$ <u>Very</u>
Usch
Verys
Usch

OR Decomposition Let A be an men matrix with full column renk. Then $A = QR$ where Q is an men matrix whose colums form an orthonormal basis of Col A · R is upper \triangle non with nonzero diagonal entries. To compute Q & R: let $\{v_{u-1}, w_{v}\}$ be the columns of A. Run Gram-Schwidt ω_{s} $\{u_{ij}$ \ldots $u_{n}\}$. Then $cards$ y $\frac{R}{V}$ $\frac{p_1}{p_2}$ $\frac{p_2}{p_3}$ $\frac{p_4}{p_4}$ $\frac{p_5}{p_5}$ $\frac{p_6}{p_6}$ $\frac{p_7}{p_6}$ $\frac{p_8}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6}$ $\frac{p_9}{p_6$ Analogy to LU decomposition: $A = L U$ $A = Q V$

 $\frac{1}{\sqrt{2}}$ echelon $\frac{1}{\sqrt{2}}$ o.n. basis to get $\frac{1}{\sqrt{2}}$ to echelonform form to an basis

$$
E_{\theta}^{c} M = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} W_{c} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} W_{c} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} W_{c} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{1}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{1}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{1}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{1}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{1}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{2}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{2}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{2}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{2}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{2}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{2}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \frac{1}{\sqrt{12} - ||u_{2}||}
$$

\n
$$
W_{c} = \begin{pmatrix} 2 \\ 0 \\ 0
$$

Application: makes least-D faster! Cerren $A=QR$, to solve $Ax=b$ by least- $Q=$ $ATA\hat{x} = (QR)^{T}(QR)\hat{x} = R^{T}Q^{T}QR\hat{x} = RTT_{n}R\hat{x} = R^{T}R\hat{x}$ $A^Tb = QR^Tb = RTQ^Tb$ NB: R is invertible: it is upper- Δ with nonzero dragonal entries. S_{olve} $R^{\dagger}R\hat{x} = R^{\dagger}Q^{\dagger}b$: $(R^{\dagger})^{-1}\cdot (-)$ $A^T A \hat{x} = A^T B$ \iff $Q \hat{x} = Q^T B$ $upper \Delta$: sake with back substitution! 尺江

108 On compute QR in
$$
\sim \frac{10}{3}
$$
 n³ Hopr for n×h.
\n(not with this algorithm) Then need $O(n^2)$ flops to do
\nleast - \square an Ax=b. (Multiply by QTx
\n(proved - substitute.) Much faster than $O(n^3)$!)
\n \square
\nFind the least squares sol- of Ax=b for
\n $A = \begin{pmatrix} x_0 & y_0 \\ 0 & 0 \end{pmatrix}$ b = $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ using A=QR
\n \square
\