Deteminants What we've done \cdot Solve $Ax = b$ (d^{e}) (bauss-Jordan, LU, PVF, ...) · Approximately solve Ax=b (orthogonality, prejections, QR,...) What's next: $-\int c \, dv \, dx = \lambda x$ This is the eigenvalue problem used in difference equations (rabbit population) & ODEs. It deals exclusively with square matrices

The determinant of a square matrix is a number that satisfies many magical properties. L'I define it by telling you how to compute it using row operations S Next time: other ways to compute it.

Def: The determinant of a square matrix A is
\na number det(A) or |A| satisfying:
\n(1) If A
$$
\frac{R_{i}+cR_{i}}{s}
$$
, B then det(A)=det(B).
\n(2) If A $\frac{R_{i}-cR_{i}}{s}$, B then det(A)=det(B).
\n(3) If A $\frac{R_{i}-R_{i}}{s}$, B then det(A)=det(B).
\n(4) det(Γ_{n}) = 1.

Consequence: if A has a zero now then $det(A) = O$ E_{0} det $\left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{array}\right)$ $\frac{R_{3}x=1}{(2)}$ -det $\left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{array}\right)$ \Rightarrow det $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{pmatrix} = 0$

Consequence it A B lupper/lover) triangular then $det(A)$ = product of diagonal entries

$$
det(\frac{transport}{matrix}) = \int_{iragonal entries}^{the}
$$

deg. REF

$$
E_{g}
$$
: $det\begin{pmatrix} a & k & k \\ 0 & b & k \\ 0 & c & c \end{pmatrix} \frac{R_{1}x=\frac{1}{6}}{R_{1}x=\frac{1}{6}} abc$ $det\begin{pmatrix} 1 & k & k \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}$
 $\frac{10k}{2}$ $det\begin{pmatrix} 1 & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{44}{5}$ $det\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = abc$

What if b=0, though?
$$
(\begin{array}{ccc} a & a \\ c & d \end{array})
$$

let $\begin{pmatrix} a & x & x \\ 0 & a & b \end{pmatrix}$ $\frac{(\begin{array}{ccc} a & x & a \\ 0 & a & b \end{array})}{(\begin{array}{ccc} a & x & b \\ c & d & c \end{array})}$
= 0 = a.0.0

A REF matrix is triangular, so you can compute
det (A) by Gaussian elimination!

$$
E_{S} : \text{det}\begin{pmatrix} 0 & 3 \\ 1 & 2 \\ 1 & 0 \end{pmatrix} \xrightarrow{R_{1} \in R_{2}} \text{det}\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 0 \end{pmatrix}
$$

$$
\xrightarrow{R_{2} \in R_{1}} \text{det}\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -1 \end{pmatrix} \xrightarrow{R_{2} \in R_{2}} \text{det}\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{pmatrix}
$$

= -2

NB: You get the same number for det(A)
nomatter which row operations you do!

$$
E_{S} : det\begin{pmatrix} 0 & 1 & 3 \ 1 & 2 & 1 \ 1 & 1 & 0 \ \end{pmatrix} \frac{R_{1} - R_{3}}{10} - det\begin{pmatrix} 1 & 0 \ 1 & 2 & 1 \ 0 & 1 & 3 \ \end{pmatrix}
$$

\n
$$
\frac{R_{2} - R_{1}}{10} - det\begin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 3 \ 0 & 1 & 3 \ \end{pmatrix} \frac{R_{3} - R_{4}}{10} - det\begin{pmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \ \end{pmatrix}
$$

\n
$$
= -2
$$

Gaussian elimination is the fastest general algorithm for computing the determinant of ^a matrix With known entries

Procelure: To compute
$$
det(A)
$$
, run Gaussian
\nelimination: A $\frac{1}{opeartons}U$. Then
\n $det(A) = (-1)^{from swap} \frac{1}{\prod (row sound)}$ $\prod (obias and$
\nNB: You don't need to do row scaling operations to
\nrun Gaussian elimination, so this term usually
\ndoes not appear.

NB Row operations multiply def by ^a nonzero scalar $A\overset{row}{\longleftrightarrow}B \implies \text{det}(B) = (\begin{smallmatrix}n\text{onzero} \\ \text{number}\end{smallmatrix}) \cdot \text{det}(A).$

 E_8 $A = \begin{pmatrix} 0 & b \\ c & d \end{pmatrix}$
- If $\alpha + 0$ H a \neq C det $(A) \xrightarrow{R_2 - \overline{a}R_1}$ det $\begin{pmatrix} 0 & d-\overline{a}b \end{pmatrix}$ = $a(d - \frac{c}{a}b) = ad - bc$

$$
\frac{dH}{dt} = 0
$$

det(A) $\frac{R_1 - R_2}{1 - bc} = \frac{det}{ad-bc}$

$$
det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad-bc
$$

Magical Properties of the Determinant: i) Existence: There exists a number det(A satisfying defining properties $[1]-[4]$ (z) Invertibility: A is invertible \Longleftrightarrow det (A) \neq 0 (3) Multiplicativity: det (AB) = det (A) det (B) and det $(A^{-1}) = \frac{1}{det(A)}$ (4) Transposes: $det(A^T) = det(A)$

We'll only prove (2) in class. See ILA for the rest.

Exercise

\n(I) says: You get the same number for
$$
det(A)
$$
 nonafter which row of your $det(B)$

\nFor $det(A)$ nonafter which row of your $det(B)$

\nProof: If U is a REF of A then $det(U) = product$ of diagonal entries $det(U) \neq 0$ and $det(\frac{1}{\sqrt{1-\frac{1}{\sqrt{1$

Eg: det
$$
\begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix}
$$
 = (-1)(-3) - (1)(3) = 0
so $\begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix}$ is singular (not invertible)

NB: If the columns of A are linearly dependent
\nthen A does not have full column rank
$$
\Rightarrow
$$

\nnot invertible \Rightarrow det (A) = 0. Likewise for rows
\n(take transposes).
\nA has linearly dependent \Rightarrow det (A) = 0

Multiply the following
\n
$$
\begin{aligned}\n\mathbf{E}_{\mathbf{g}} \cdot \det \left[\begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}^{100} \right] \\
= \det \left[\begin{pmatrix} 0 & 1 & 3 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}^{qq} \right] \\
= \det \left(\begin{pmatrix} 0 & 1 & 3 \\ 1 & 0 & 0 \end{pmatrix} \det \left[\begin{pmatrix} 0 & 1 & 3 \\ 1 & 0 & 0 \end{pmatrix}^{q} \right] \\
= \cdot \cdot \cdot = \left[\det \begin{pmatrix} 0 & 1 & 3 \\ 1 & 0 & 0 \end{pmatrix} \right]^{100} = (-2)^{100}\n\end{aligned}
$$

More generally,
\n
$$
dt(A^{n}) = det(A)^{n} \frac{\int_{a}^{b} f(t)dt^{n}}{\int_{a}^{b} dt^{n}} = det(A)^{n}
$$

\n $E_{1} = \int_{a}^{b} f(t)dt^{n}$
\n $det(L) = det(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = 1$
\n $det(L) = (-1)^{t+a} \frac{\int_{a}^{b} f(t)dt^{n}}{\int_{a}^{b} dt^{n}}$
\n $det(P) = (-1)^{t+a} \frac{\int_{a}^{b} f(t)dt^{n}}{\int_{a}^{b} dt^{n}}$
\n $= det(L) = det(L)det(M)$
\n $= det(M)$

This recovers the formula on p.4 (ne did no

lansposes

The transpose property says that det (A) satisfies (1)-(3) for column operations too they're just row operations on AT.

Determinants and Volumes
\nWhere do properties (1) - (4) come from?
\nTwo vectors
$$
v_yv_x \in \mathbb{R}^2
$$
 determine
\n $\int_{-\infty}^{\infty} f_{\infty n}^{(n)} \times \int_{-\infty}^{\infty} f_{\infty}^{(n)} \cdot f_{\infty}^{(n)} dx = \int_{-\infty}^{\infty} x, v_1 + x_2v_2 : x_3x_3 \in [0, 1]$
\nFor $area(P) = |det(-v_1^T - x_3^T - x_4^T - x_5^T - x_6^T - x_7^T - x_7$

rearrange

 $NB: area(P) = base \times height:$

(1)
$$
Ro_{0}
$$
 replacement
\n $v_{2} \rightarrow v_{2} + cv$
\n $0.00 \rightarrow c_{0}$
\n $0.00 \rightarrow c_{0}$
\n $v_{1} \rightarrow cv$
\n $v_{2} \rightarrow cv$
\n $v_{1} \rightarrow v$
\n v

 NB When $n=1$, "volume" = "langth": $length(a) = |a|$ $\frac{a}{b}$ $NB:$ When $n=2$, "volume" = "area". Question: When is volume (P) = 0? When P is squashed flat: P' is area=0
ie when $V_5 - V_n$ are V_n linearly dependent (\Rightarrow) det $(\neg) = o$)

NB: In multivariable calc, you approximate shapes by tiny cubes, which turn into tiny parallele-
pipeds after applying a function. This is why determinants appear in the change of variables tomula for integrals. if $(g_{\nu}g_{\nu})=\int (x_{\nu}y_{\nu})$ then $dy - dy - d$ det $\frac{dy}{dx}$ dx \cdots dxn 0 $\frac{1}{2}$ $det(e^{i\theta})$ det