Eigenvalues Eigenvectors This is a core concept in linear algebra. It's the tool used to study, among other things: · Difference equations . Markou chains
• Differential equations . Stachastic processes Differential equations We will focus on difference equations & differential equations α s applications, and we'll also need it to understand the SVD. It also may be the most subtle set of ideas in the whole class so pay attention Unlike orthogonality I can motivate eigenvalues with an example right off the bat Running Example In a population of rabbits: $\frac{V_{4}}{V_{4}}$ survive their I_{3}^{2} gear [demo] 12 survive their $2^{\frac{m}{2}}$ gear · Max lifespon is 3 years · I-year old rabbits have an average of 13 babies . 2-year old rabbits have an average of 12 babies

This year there are 16 books, 6 1-year-olds,
and 1 3-year-old.
Problem: Describe the long-term behavior of
thus system.
Let's give names to the state of the system
in year k:

$$
x_k = \#
$$
 blocks in year k
 $y_k = \#$ (1-year-olds in year k
 $y_k = \#$ (2-year-olds in year k
 $z_k = \#$ (3-year-olds in year k
 $z_k = \#$ (4-1-2-year-olds in year k
 $z_k = \#$ (5-16
 $z_k = \frac{1}{4}x_k$
 $z_k = \frac{1}{2}y_k$
As a matrix equation,
 $V_{k+1} = A V_k$ $A = \begin{pmatrix} 0 & 13 & 12 \\ 4 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$ $V_s = \begin{pmatrix} 16 \\ 0 \\ 1 \end{pmatrix}$
What happens in 100 years?
 $V_{100} = Av_{91} = A \cdot Av_{93} = \dots = A^{\infty}V_s$

Def: A difference equation is a matrix equation
\n
$$
d
$$
 the form
\n $V_{k+1} = Av_k$ with V_k fixed,
\nwhere
\n $V_{k+1} = Av_k$ with V_k fixed,
\nwhere
\n $V_k \in \mathbb{R}^n$ is the state of the system
\n $V_k \in \mathbb{R}^n$ is the initial state
\n $V_k \in \mathbb{R}^n$ is the initial state
\n V_k is an non-
\nsidue change matrix
\nSo in a difference equation, the state at time $k+1$
\nis related to the state of time k by a matrix
\nmultiplication.

Solving a difference equation means computing & describing Akr, for large values of k.

NB Difference equations are ^a very common application Google's PageRank is ^a difference equation! UBut not in an obvious way

NB: Multiplying A·v_k requires n multiplications
and n-1 additions for each coordinate, so
$$
\approx 2n^2
$$

Heps. If n=1900 and k=1,000, $\frac{1}{18}$ as
100 gradients! Plus we get no qualitable
understanding of v_k for k-30. Use need
to be more clever.

Observeation:
$$
Jf
$$
 $v_0 = (33, 4, 1)$ instead. Then
\n $V_1 = Av_0 = \begin{pmatrix} 0 & 13 & 12 \ y_4 & 0 & 0 \ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 32 \ 4 \ 1 \end{pmatrix} = \begin{pmatrix} 64 \ 8 \ 3 \end{pmatrix} = 2v_0$
\n S_0 $V_2 = A^2v_0 = A(Av_0) = A(2v_0) = 2Av_0 = 2^2v_0$
\n $Y_0 = A^2v_0 = A(Av_0) = A(2v_0) = 2Av_0 = 2^2v_0$

$$
v_3 = A^2 v_0 = A(A^2 v_0) = A(2^2 v_0) = 2^x v_0
$$

 $v_0 = A^2 v_0$

If
$$
Av = 2v
$$
 for a scalar 2, then $Av = 2ky$ for all k

\nThus is $cosy$ to $compub!$ And to describe.

\nNext time: $What$ if $Av \neq (scalar) \cdot v$? $Diagonalization$.

\n $leg. v_0 = (16.6, 1)$ above.

Def: An eigenvector of a square matrix A

\nis a nonzero vector v such that

\nAr= Av: for a scalar
$$
\lambda
$$
.

\nThe scalar λ is the associated eigenvalue.

\nWe also say $v = a \lambda$ -eigenvector

\nNeigenvector, soeg λ

If
$$
v
$$
 is an eigenvector of A with eigenvalue λ
then $A^k v = \lambda^k v$ is easy to compute.

Eg:
$$
\begin{pmatrix} 0 & 13 & 12 \\ 4 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 64 \\ 8 \\ 8 \end{pmatrix} = 2 \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix}
$$

\nSo, (32,4,1) is an eigenvalue
\n9. This means if you start with 32 behaves,
\n4 1-year rabbits, and 1 2-year rabbit,
\nthen the population exactly doubles
\neach year.

Geometrically an eigenvector of A is ^a nonzero rector r such that Ar lies on the line thru the origin and v.

A rotates eigenvectors by O or 180 Eg ^A I ⁹ ^A g Y flip over ^y axis Where are the eigenvectors or 8 us An 8 ^e ^r Ard ^r are on the same line The nonzero vectors on the ^x axis are eigenvectors with Ai eigenvalue 1 ^r g Are g ^I ^v Ard ^r are on the same line The nonzero vectors on the ^V Ar ^g axis are eigenvectors with eigenvalue 1 Av ^u are on ^r y with ^x y 40 different lines Ave Yy is not ^a Ar or multiple of ^u So we've found all eigenvectors eigenvalues demo

Eg:
$$
A = \begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}
$$
 $A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ y \end{bmatrix}$: a shear
\nWhere are the eigenvectors? $A \cdot x$ are an
\n• $v = \begin{pmatrix} x \\ 0 \end{pmatrix}$ \Rightarrow $Av = \begin{pmatrix} x \\ 0 \end{pmatrix} = v$ the same line.
\nThe **Innerly vectors on the**
\n x -axis are eigenvectors with
\neigenvalue 1.
\n• $v = \begin{pmatrix} x \\ y \end{pmatrix}$ with $x, y \neq 0$:
\n $Av = \begin{pmatrix} x-y \\ y \end{pmatrix}$ different lines.
\nThis is not a multiple of v
\nbecause $1 = \frac{3}{3} \neq \frac{xy}{3}$.
\nEdems.
\nEg: $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ x \end{bmatrix}$: CCO rotation by 90°
\nThere are no *(real)* eigenvectors: $A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
\n \therefore A or are never on the
\nsame line lunless $v = 0$.
\nLdmol

Eigenspaces Given an eigenvalue 2, how do you compute the N-eigenrectors? $A_v = \lambda_v \iff A_v - \lambda_v = 0$ $\iff Av - \lambda I_v v = 0$ $\iff (A - \lambda \pm \lambda) v = 0$ \iff $v \in$ Nu $(A - \lambda T_n)$ Det Let λ be an eigenvalue of an non motion A. The λ -eigenspace of A is $N_{w}(A - \lambda I_{n}) = \{v \in \mathbb{R}^{n}: Av = \lambda v\}$ = fall 2-ergenvectors and Of 1-eigenspace E_g : $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ 1-eigenspace E_1 : $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

 E_3 $A = \begin{pmatrix} 0 & 13 & 12 \\ 4 & 0 & 0 \\ 0 & 12 & 0 \end{pmatrix}$ $\lambda = 2$ A - $2I_3 = \begin{pmatrix} -2 & 13 & 12 \\ 1/4 & -2 & 0 \\ 0 & 12 & -2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 & -32 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \end{pmatrix}$ $\sum_{n=0}^{2005} N_{41}(A-2I_3) = S_{\text{min}}\left\{\begin{pmatrix} 32 \\ 4 \end{pmatrix}\right\}$ This line is the 2-eigenspace. all 2-eigenvectors are multiples of $\binom{32}{1}$ [demo] E_g : $A = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ $\lambda = -1$ $A - (-1)I_3 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 2 \\ -1 & 1 & 2 \end{pmatrix}$ in $\begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\frac{\rho v_F}{\sqrt{2}} \text{ N} \omega \left(A - (-1) I_s \right) = \sum_{\mu} \rho \omega \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \left(\begin{array}{c} 2 \\ 0 \end{array} \right)$ This plane is the (-1)-eigenspace. All (-1)-eigenvectors are linear combinations of $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 9 \end{pmatrix}$. [demo] NB : If λ is an eigenvalue then there are infinitely many λ -eigenvectors: the λ eigenspace is a nonzero subspace. $(nis$ means $A - \lambda I$ has a free variable.)

E_g:
$$
A = \begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 1 \end{pmatrix}
$$
 $\lambda = 0 \rightarrow A - \lambda I_{3} = A$
\n $\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 & -1 \ 6 & 6 & 2 \ 6 & 6 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & -1 \ 0 & 3 & 5 \end{pmatrix}$
\nThis line is the 0-eigenspace
\nNIB: 0 is a legal eigenvalue
\n $(\text{ndr an eigenvalue})$ and
\n $(0 \text{-eigenspace}) = \text{Nul}(A - \text{OTn}) = \text{Nul}(A)$
\n $= \frac{5}{3} \times \text{ER}^{3}$; $A \times = \text{OX} \times \overline{S}$
\nThe 0-eigenspace is the null space
\nS₀ if 0 is an eigenvalue of A then
\nNul(A) \neq fo \overline{S} , so A is not irretable (not FCR).
\nA is invertible \Leftrightarrow 0 is not an eigenvalue

 E_j Let V be a subspace of K_j K_f the projection matrix. What are the eigenvectors eigenvalues $\cdot \text{P}_b = 16 \implies b > b_v \Longleftrightarrow b \in V$ V is the I eigenspace $\cdot \rho_{\nu} b = 0$ = 0b ϵ be V^{\perp} V^{\perp} is the O-eigenspace [demo]

The Characteristic Polynomial Given an eigenvalue λ of A , we know how to find all λ -eigenvectors: Nal $(A - \lambda \mathbb{L})$. How do we find the eigenvalues of A? E_{g} $A = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ $\lambda = 1$ $A - I_{2} = \begin{pmatrix} -2 & 0 & 0 \\ -1 & -1 & 2 \\ -1 & 1 & 1 \end{pmatrix}$ iet $\begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ This has full column rank: $Nu(A-1T_3) = \{0\}$ This means 1 is not an eigenvalue of A.

Indeed, λ is an eigenvalue of A Are Xu has ^a nonzero solution ^v \Rightarrow $(A-\lambda I_n)v=0$ has a nonzero solution $\iff \lim (A - \lambda I_n) \neq \{0\}$ \Leftrightarrow $A - \lambda I$, is not invertible \Leftrightarrow det $(A - \lambda I_n) = 0$

This is an equation in λ whose solutions are the eigenvalues!

 E_3 : Find all eigenvalues of $A = \begin{pmatrix} 0 & 13 & 12 \\ 4 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$ det $(A-\lambda I_3) = det \begin{pmatrix} -\lambda & 13 & 12 \\ 4 & -\lambda & 0 \\ 0 & 12 & -\lambda \end{pmatrix}$ $\frac{expend}{cofactors}$ - $\lambda det(\frac{-\lambda}{\nu_{1}} - \lambda) - \frac{1}{4}det(\frac{\lambda^{3}}{\nu_{1}} - \lambda) + 0$ $= -\lambda^3 - \frac{1}{4} \left(-(3\lambda - 6) = -\lambda^3 + \frac{13}{4} \lambda + \frac{3}{2} \right)$ We need to find the zeros (roots) of a unbic
palynomial: $\rho(\lambda) = -\lambda^3 + \frac{13}{4}\lambda + \frac{3}{2} = 0$ Ask a computer: $-\frac{1}{2}t\frac{13}{4}\lambda+\frac{3}{2} = -(\lambda-1)(\lambda+\frac{1}{2})(\lambda+\frac{3}{2})$ So the eigenvalues are $2, -\frac{1}{2}, -\frac{3}{2}$. Def: The characteristic polynomial of an nun
matrix A is $\rho(\lambda) = det(A - \lambda I)$ λ is an eigenvalue of $A \Leftrightarrow \rho(\lambda) = o$