Systems of ODEs

Toy Example: Here & an extremely simplistic model of disease spread:

H(t) = # healthy people at time t (in years)

I(f) = # infected people at time t

D(t) = # dead people at time t

Assumptions:

- (1) Healthy people are infected at a rate of 0.3 x # healthy people
- (2) Infected people recover at a rate of 0.9 x # infected people
- (3) Infected people die at a rote of 0.1 × # mfected people

In equations:

(1)
$$\frac{dH}{dt} = \frac{infected}{-0.3H} + 6.9I$$

(2)
$$\frac{dI}{dt} = \frac{\text{infected}}{0.9I} - \frac{\text{dead}}{0.9I} - \frac{\text{dead}}{0.1I}$$

Matrix Form's let
$$u(t) = (H+), I(t), D(t)$$
.

$$\frac{du(t)}{dt} = u(t) = \begin{bmatrix} -0.3 & 6.9 & 0\\ 0.3 & -0.9-0.1 & 0\\ 0 & 0.1 & 0 \end{bmatrix} u(t)$$

Def: A system of linear ordinary differential equations loves) is a system of equations in unknown functions $u_1(t),...,u_n(t)$ equating the derivatives u_1' with a linear combination of the u_1' : $u_1'(t) = a_n u_n(t) + \cdots + a_n u_n(t)$

Un'(t) = anch(lt) + --- + ann un (t)

Matrix form: writing u(t) = (n, |t|, ..., u, (t)) and u'(t) = (u'(t), ..., u, (t)), a system of linear ODEs has the form

u'(t) = Au(t)

For an nxn matrix A (with numbers in it, not functions of t).

It you also specify the initial value u(o) = uo, this is called an initial value problem. some rector

How to solve a system of linear ODEs? Dragonalize A! Eg: Suppose us is an eigenvector of A: Au= Jus. Then the solution of the initial value problem u'= Au u(o) = uo is u(t) = ext uo: u'(t)= de extur= le ru. Ault)=Aetu = extAu = hetus $u(0)=e^{\lambda 0}u_0=u_0$ In general we expand up in an eigenbosis, as for différence equations: U= x,ω,+--++ x,ω, Aω=>,ω; us ult)= elitxwi+--+ elitxwi is the solution of u'=Au, $u(o)=u_o$.

 $u'(t) = \lambda_1 e^{\lambda_1 t} x_1 \omega_1 + \dots + \lambda_n e^{\lambda_n t} x_n \omega_n$ $A_{\alpha}(t) = e^{\lambda_1 t} x_1 A \omega_1 + \dots + e^{\lambda_n t} x_n A \omega_n$ $= \lambda_1 e^{\lambda_1 t} x_1 \omega_1 + \dots + \lambda_n e^{\lambda_n t} x_n \omega_n$ $u(0) = e^{\lambda_0 t} x_1 \omega_1 + \dots + e^{\lambda_n t} x_n \omega_n = u_0$

Eg. In our infections disease model, suppose
$$n_0 = (1000, 1, 0)$$
 (1000 healthy people, 1 infected, 0 dead)

Eigenvalues of $A = \begin{pmatrix} -0.3 & .9 & 0 \\ 0.3 & -1 & 0 \end{pmatrix}$ are

$$\lambda \approx -.0235$$

$$\lambda_{2} \approx -1.28$$

$$\lambda_{3} = 0$$

Eigenvectors are

$$\omega_{1} \approx \begin{pmatrix} 11.77 \\ -12.77 \end{pmatrix} \quad \omega_{2} \approx \begin{pmatrix} -.765 \\ -.235 \end{pmatrix} \quad \omega_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Solve U= X,W, + X2W2+ X3W3:

$$U_0 = \begin{pmatrix} 1000 \\ 1 \\ 0 \end{pmatrix} \approx 18.70 \ \omega_1 - 1019.70 \ \omega_2 + 1001 \ \omega_3$$

Solution is:

$$u(t) = e^{-.0235t} \cdot 18.70u_1 - e^{-1.28t} \cdot 1019.70u_2 + 1001u_3$$

$$H(t) = 220e^{-.0235t} + 780e^{-1.28t}$$

$$\Rightarrow I(t) = -238c^{-.0235t} + 239e^{-1.28t}$$

Looks like the human race is doomed...

Procedure for solving a linear system of ODEs using diagonalization:
wing angonalization.
to solve u'= Au, u(0) = uo when A is diagonalicable:
diagonalicable:
(1) Diagonalize A: get en eigenbasis sug-son?
with eigenvalues Dung In.
(2) Expand us in the eigenbasis?
solve $u = x_1 w_1 + \cdots + x_n w_n$
Solution: ult)= elitxwi++ elitxwi
Compare to:
Procedure for solving a Difference Equation
using diagonalization:
To solve VH=AVK, Vo fixed when A is diagonalicable:
diagonalieable:
(1) Diagonalize A: get en eigenbasis sug-son?
with eigenvalues $\lambda_{v-1}, \lambda_{n-1}$
(2) Expand vo in the eigenbours?
solve $V_0 = X_1 W_1 + \cdots + X_n W_n$
Solution:
$V_k = \lambda_i^k x_i w_i + \dots + \lambda_k^k x_n w_n$

This works fine with complex eigenvalues. As with difference equations, you can write the solution with real numbers using trig functions.

Eg:
$$u'(t) = u_z$$
, $u_s'(t) = -4u_i$,
 $u_i(0) = 2$ $u_z(0) = 0$

$$\sim u' = Au \quad for \quad A = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \quad u(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Eigenvalues are
$$\lambda = 2i$$
, $\bar{\lambda} = -2i$

Eigenvectors are
$$w = \begin{pmatrix} 1 \\ 2i \end{pmatrix}$$
 $\widetilde{w} = \begin{pmatrix} 1 \\ -2i \end{pmatrix}$

Solution is
$$u(t) = e^{\lambda t} \omega + e^{\lambda t} \overline{\omega} = 2 Re [e^{\lambda t} \omega]$$

=
$$2\text{Re}\left[e^{2it}\left(\frac{1}{2i}\right)\right] = 2\text{Re}\left[\left(\cos\left(2t\right) + i\sin\left(2t\right)\right)\left(\frac{1}{2i}\right)\right]$$

=
$$2 \operatorname{Re} \left(\frac{(2+1)}{-2\sin(2+1)} + \frac{(2\cos(2+1))}{-4\sin(2+1)} \right) = \left(\frac{(2\cos(2+1))}{-4\sin(2+1)} \right)$$

Check:
$$u_1' = (2\cos(24))' = -4\sin(24) = u_2$$

 $u_2' = (-4\sin(24))' = -8\cos(24) = -4u_1$
 $u_3(0) = 2$ $u_2(0) = 0$

This method can also be used to solve (linear)
ODEs containing higer-order derivatives.

Eg: Hooke's Law says the force applied by a spring & proportional to the amount it is stretched or compressed:

F(t)=-k p(t) 16>0

F=ma, $\alpha = acceleration = p'': replace k by <math>4m^2$ p''(t) = -kp(t)

Trick: Let $u_1=p$, $u_2=p!$ Then $u_1'=u_2$ $u_2'=-ku_1$

This is the system $u'lf) = \begin{pmatrix} 0 & 1 \\ -k & 0 \end{pmatrix} ulf)$

We solved this before for k=4, u(0)=(2,0)= $p(t)=2\omega_{0}(2t)$ $p'(t)=-4\sin(2t)$ oscillation.

The Matrix Exponential

There are 2 features missing from the ODEs picture that we had for difference equations:

(1) Matrix fom: V= CDkC-1 V3

(2) Existence of solutions:

it's obvious that $V_k = A^k V_o$ has a solution - it was not obvious how to compute it.

Both can be filled in using the matrix exponential.

Recall: Using Taylor expansions, you can write $e^{x} = 1 + x + \frac{1}{5!}x^{2} + \frac{1}{3!}x^{3} + \cdots \quad (convergent rum)$

Def: Let A be an nxn matrix. The matrix exponential is the nxn matrix

 $e^{A} = I_{A} + A + \frac{1}{5!}A^{2} + \frac{1}{3!}A^{3} + \cdots$ (convergent sum)

 $E_{S} = A^{2} = 0, S_{O}$ $e^{At} = I_{2} + At + 0 + \cdots = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$

Eg:
$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \sim A^k = \begin{pmatrix} \lambda_1 k & 0 \\ 0 & \lambda_2 k \end{pmatrix}, So$$

$$e^{At} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \lambda_1 t & 0 \\ 0 & \lambda_1 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^2 t^2 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 & k^2 k \end{pmatrix} + \begin{pmatrix} \frac{1}{2!} \lambda_1^3 t^3 & 0 \\ 0 &$$

Why do se care about eAt?

Fact:
$$\frac{d}{dt}e^{At} = Ae^{At}$$

Consequence: $u(t) = e^{At}u_0$ solves the Invar ODE u'(t) = Au(t) $u(0) = u_0$

In particular, a solution exists.

The equations

$$u(t)=e^{At}u$$
, and $V_k=A^kV_0$

are analogous: they both show a solution exist, but give you no way to compute it.

Est If
$$A = CDC'$$
 is diagonalizable then
$$e^{At} = Ce^{Dt} C'' = C \left(e^{\lambda_1 t} \cdot c \right) C^{-1}$$
This is computable!

The equations

eAt = CCDtC-1 and At = CDtC-1

are also analogous; they are computable!

In fact, if you expand out

ult) = CeDtC-1 us

you exactly get the rector form

ult) = elit x wi + - + e x t x w w

where (x, ..., xn) = C-1 us.

Viene Equation Dictionary Initial Value Abblem

Viene Ave vo fixed Problem u'(t) = Au(t) u(o) fixed

Viene At vo Uncomputable u(t) = et u(o)

Viene At vo Solution

Viene Aiximit --- + Aiximin Computable u(t) = ehit xivit --- + ehit ximin

for vo = xivit +--- + ximin Solution for u(o) = xivit +--- + ximin

(iden diagonalizable)

Matrix

41 = CDKC-1

eAt = CeDtC-