
 

DLT Cholesky

This amounts to an Ln decomposition of a positive
definite symmetric matrix that's 2x as fast to
compute

Thm A positive definite symmetric matrix S can be
uniquely decomposed as

S LDLT and S L Lt Cholesky

where

D diagonal w positive diagonal entries
L lower unitriangular
L lover triangularwith positive diagonal entries

Proof i supplement

NB Any such L has full column ranks so S L Lt
is necessarily positive definite symmetric lasttime

NB Let U DLT
scales the rows of Lt by the diagonal entries of D

then U r upper D with positive diagonal entries

in REF so Se Lll is the LU decomposition

This tells us how to compute an LDL decomposition



Procedure to compute S LD Lt
Let S be a symmetricmatrix

1 Compute the LU decomposition S LU

If you have to do a row swap then stop

S is not positive definite
If the diagonal entries of U are notall
positive then stop S is not positive definite

2 let D the matrix of diagonal entries of U
setthe off diagonal entries D Then

S LDLT

NB An LDL decomposition can be computed in ut n
flops as opposed to 43 n for LU This

requires a slightly more clever algorithm See

the supplement it's also faster by hand

NB This is still an LU decomposition lets you
solve Sx b quickly

NB S QDQT and S LDL are both dragonalizations

in the sense of quadratic forms later
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Cholesky from LDLT
If S is positive definite then S LD Lt
where D is diagonal with positive diagonal entries

If D Ein set D E g
Then TD TD D and BEND so

DLT L DOLT LD LEDIT
So just set

Li LTD S LILI

Strang

SATA is how a positive definite symmetric
matrix is put together

S Lili is how you pull it apart

Eg EI I L Lit for

E



Quadratic Optimization

This is an important application of the spectral theorem
and positive definiteness Also SVD Q Ote stats PCA

It is the simplest case of quadratic programming which
is a big subfield of optimization so is least squares
For an example application see the Wikipedia page
for support vector machine an important tool in
machine learning that reduces to a quadratic optimization
problem There are tons of other applications

Def An optimization problem means finding extremal
values minimum maximum of a function
flan xn subject to some constraint on x xn

In quadratic optimization we consider quadratic function

Def A quadrate form in n variables is a function

glx xn sum of terms of the form a Xix

Eg qlx X ExitExe xx

Non eg qlx xD xitxitx.tk is not a quadratic
form X X are linear terms



NB Thinkingof x x x as a vector

q ex qLexi Xu Iag ex xj

Ec'aijxix dg x

g ex Eg x

In quadratic optimization the constraint on

x x xn is usually 11 11 1 ie xp xi 1

Quadratic Optimization Problem
Given a quadratic form q x find the
minimum maximum values of q x subject
to 1111 1

Eg alex Xi 2x

Maximum

q xox
3 7 2 5 3 7 3 5
3 x X 311 112 3

So the maximum value is 3 it is achieved

at xoxo I 11,0 9 4,03 3



Minimum

glux 3 5 2 57 Xi 2 3

2 xxx 211 112 2

So the minimum value is 2 it is achieved

at xoxo Elo D q o 2

This example is easy because glyx 3 5 2 5
involves only squares ofthe coordinates there is
no cross tem XiXz

Def A quadratic form is diagonal if it has the
form qlxy.hn sum of terms of the form Taxi

Terms of the form aijxix.li j are cross terms

Quadratic Optimization of Diagonal Forms
Let a lx E Dixie Order the Xi se that
X 2 23 ZX n Then
The maximum value of q x is di

The minimum value of q x is an

subject to 11 11 1

NB the Ai could be negative



Strategy To solve a quadratic optimization problem

we want to diagonalize it to get rid of the
cross terms

To do this we use symmetricmatrices

Fact Every quadratic form can be written

qG IS
for a symmetric matrix S

Eg Sa I
3 5 6

us XtSx x x x I
2x 4 2 5 3xxx III

X 2x a 3xx

2x X it 4 5 Six

3X X t 5 3 2 6 32

Xi 4xit 6 5 4 xx Gxixstloxax

NB The 6,2 and 12,1 entries contribute to the
Xi Xi coefficient



Given q how to get s
The xi coefficients go on the diagonal and
half of the xix coefficient goes in the is and
ji entries

q lx X X3 taxi taxi taxi
AnXXz ta Xix t Azz XX

st i
NB q is diagonal ES is diagonal the ai

are the coefficients of the cross terms

xt g g x dixie tax it taxi

How does this help quadratic optimization

Orthogonally diagonalize

q x
xtSx

Find a diagonal matrix D and orthogonal matrixQ
such that S QDQt

qG xtQDQTx



Let x Qy this is a changeof variables

96 g ay OyTQDQT a
yTQtÉDQTQI yTDy

This is now diagonal

NB Q B orthogonal Hall HQyllellyll
so Hillel e Hyla

Eg Find the minimum maximum of

914 Xs IxitfxE sx.xz cg.t
em

subject to 11 11 1

que xt
5

x 5 2 555 2 112

Orthogonally diagonalize S QD Qt for

a Eli i D 13

Set x Qy

I ti ill GEE
Xi It yity is a

linear change
XE Yaya of variables

Then glx y I y 3yi 2y



Checks

q x q El yay fly eye
Iffy ty tÉEly tye 5 ftp.tydlyitya

I yitfyi jfiyitfyattzg.grEye Eye
Htt E y t Htt E yi 3 i 2g

The maximum value of q subject to Allally l l
is 3 achieved at

y Il O x Oy I fly
The minimum value of q subject to Allally l l
is 2 achieved at

y al x Qy I

NB The minimum value is the smallest diagonal
entry of D us smallest eigenvalue

Q 8 is the first columnof Q
B a unit eigenvector for that eigenvalue

Likewise fer the largest eigenvalue



Quadratic Optimization
To find the minimum maximum of a quadratic
form q

x subject to Axl 1

1 Write aG xtSx for a symmetric matrix S

2 Orthogonally diagonalize S QDQt for

a final D g
Factors Tunes

Order the eigenvalues so X Z an
3 The maximum value of q lx is the largest
eigenvalue Xi
It is achieved for any unit X eigenvector
The minimum value of q lx is the smallest
eigenvalue In

It is achieved for any unit In eigenvector

NB If GM Xi 1 then the only unit Xi eigenvectors
are Ini only 2 unit vectors are on any line

NB x dy diagonalizes g 1
g x X get any


