LDL^I & Cholesky

This amounts to an LM decomposition of a positive detrait, symmetric matrix that's Ix as fest to compute

 Thm^2 A positive-definite symmetric matrix $>$ can be uniquely decomposed as S = LPL and $S = L, L, \leftarrow$ Cholesky where D diagonal ^w positive diagonal entries L: lower unitriengular Li lover-triangular with positive diagonal entries. Proof: [supplement] NB^2 Any such L, has full column ranks $S = L_1L_1$ is necessarily positive definite & symmetric llast time NB : Let $U = DL^{T}$. (scales the rows of L^T by the dragonal entries of D) then U is upper $-\Delta$ with positive diagonal entries \Rightarrow in REF, so S=LU is the LU decomposition! This tells us how to compute an LDL^T decomposition.

Procedure to compute S=LDL^T: Let S be a symmetric matrix. (1) Compute the LU decomposition S=LU. \rightarrow If you have to do a row swap then stop: S is not positive -definite. If the diagonal entries of U are notall positive then $step: 5$ is not positive -definite. (2) let D= the matrix of diagonal entries of U $[set the of-diagonal entries = 0)$. Then $S = LDLT$.

 NB An LDL^T decomposition can be computed in $\frac{1}{3}n^3$ $f\vert_{\text{eps}}$ (as opposed to $2/3$ n³ for LU). This requires a slightly more clever algorithm. See the supplement - it's also faster by hand!

NB: This is still an LU decomposition - lets you

 $MB:$ S=CDC' and S=LDL' are both dragonalizations in the sense of quadratic forms llater

$$
\begin{array}{ccccccccc}\n\mathbf{1} & \mathbf{1} & \
$$

$$
D = \begin{pmatrix} d_{1,0} & d_{2,0} \\ 0 & d_{1,0} \end{pmatrix} \text{ set } \overline{D} = \begin{pmatrix} d_{1,0} & d_{2,0} \\ 0 & d_{2,0} \end{pmatrix}
$$
\n
$$
Then \overline{D} \cdot \overline{D} = D \quad \text{end} \quad \overline{D} \cdot \overline{D} = (L_{1,0} \cdot \overline{D})
$$
\n
$$
L_{2,0} = L_{1,0} \cdot \overline{D} = L_{2,0} \cdot \overline{D} = (L_{1,0} \cdot \overline{D}) \cdot (L_{2,0} \cdot \overline{D})
$$
\n
$$
S = \overline{D} \cdot \overline{D} \quad \text{and} \quad \overline{D} = \overline{D} \cdot \overline{D} = L_{1,0} \cdot \overline{D}
$$
\n
$$
S = L_{1,0} \cdot \overline{D} \quad \text{is } \overline{D} = \overline{D} \cdot \overline{D} = L_{1,0} \cdot \overline{D}
$$
\n
$$
S = L_{1,0} \cdot \overline{D} \quad \text{is } \overline{D} = \overline{D} \cdot \overline{D} = L_{1,0} \cdot \overline{D} = \overline{D} \cdot \overline{D} =
$$

Cholesky from LDLT If S is positive definite then S LD Lt

where D is diagonal with positive diagonal entries.

Quadratic Optimization This is an important application of the spectral theorem and positive definiteness. Also, $SVD+QO+e$ stats = PCA.

It is the simplest case of quadratic programming, which is a big subfield of optimization. (So is least squares.)

For an example application, see the Wikipedia page for support vector machine an important tool in machine learning that reduces to ^a quadratic optimization problem. There are tons of other applications

Def An optimization problem means finding extremal values (minimum) of a function $f(x_1,...,x_n)$ subject to some constraint on $(x_1,...,x_n)$

In quadratic optimization, we consider quadratic functions. Def: A quadratic form in n variables is a function $q(x_1,...,x_n)$ = ζ un of terms of the form $a_{ij}x_ix_j$

 E_{g} q(x, x,) = $\frac{5}{2}x^{2}+\frac{5}{2}x^{2}-x$, x, N_0 eg^{-} $q(x_1)x_2$)= $x^2+x_2+x_1+x_2$ is not a quadratic f α , α are linear terms.

NB: Thinking of x=(x₀...x_n) as a vector,
q(x)=q(x₀...,cx_n) =
$$
\sum a_{ij}
$$
 (cx_i)(cx_i)
= $\sum c^2 a_{ij}x_ix_j = c^2 q(x)$

$$
q(cx) = c^2 q(x)
$$

In quadratic optimization, the constraint on $x = (x_1, y_1, x_2)$ is usually $||x|| = 1$, ie $x_1^2 + \cdots + x_n^2 = 1$. Quadratic Optimization Problem³ Given a quadratic form $q(x)$, find the minimum Δ maximum values of $q(x)$ subject t_{∞} $||x|| = 1$.

Eg:
$$
q(x_1, x_2) = 3x_1^2 - 2x_2^2
$$

$$
Maximum3 = 3x12 - 2x22 = 3x12 + 3x22= 3(x12 + x22) = 3||x||2 = 3So the maximum value 33 in 3 in 3 and 3at (x1x2) = ± (1,0) : q(±1,0) = 3.
$$

Minimum:

$$
q(x_1x_2) = 3x_1^2 - 2x_2^2 = -2x_1^2 - 2x_2^2
$$

= $-2(x_1^2 + x_2^2) = -2||x||^2 = -2$

So the minimum value is
$$
-2
$$
; if \ge a chi
at $(x, x) = \pm (0, 1)$; $q(0, \pm 1) = -2$.

This example is easy because $q(x_1x_1) = 5x_1^2-2x_2^2$ involves only squares of the coordinates there is ∞ cross-fem x_1x_2

Let: A quadratic form is diagonal if it has the form
$$
q(x, y, x) = 5
$$
 and $tanx = 6$ and $tanx = 7$.

\nThen, of the form $ayx \cdot x = 5$ and $tanx = 7$.

\nQuadrator $Optimization$ of $Diagonal$ $tanx$.

\nLet $q(x) = \sum_{i} \lambda_{i} x_{i}^{2}$. Order the x_{i} so that $\lambda_{i} \geq \lambda_{i} \geq \cdots \geq \lambda_{n}$. Then, $Imisimum$ value of $q(x)$ is λ_{1} .

\nTherefore, the minimum value of $q(x)$ is λ_{n} .

\n(subject + $|x| = 1$).

\nNB: the λ_{i} could be negative.

Strategy: To solve a quadratic apponization problem, we cant to dragonalize it to get nd of the cross tems. To do this, we use symmetric matrices! Fact: Every quadratic form can be written $q(x)=x^{T}Sx$ for a symmetric matrix S. E_3 : $S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 2 & 5 & 7 \end{pmatrix}$ $\int \sqrt{15}x = (x_1 \cdot x_2 \cdot x_3) \left(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{3}{6} \right) \left(\frac{x_1}{x_2} \right)$ = (x, x, x) $\left(\frac{x + 2x}{x} + 3x^2\right)$
= $\left(x, x, x^2\right)\left(\frac{2x}{x} + 4x^2 + 5x^2\right)$ = $x^2 + 2x_1x_2 + 3x_1x_3$ $+2x_2x_1+4x_2^2+5x_3x_3$ $+3x + 5x + 6x^{2}$ = x^2 + $4x^2$ + $6x^2$ + $4x_1x_2$ + $6x_1x_3$ + $10x_2x_3$ $NB: The (1,2)$ and $(z,1)$ entries contribute to the XIX2 Coeffrient.

Given
$$
q_3
$$
 how to get S ?

\nThe x_i^2 coefficients q_0 on the diagonal, and half of the x.x, coefficient goes in the (ij) and (j,i) others.

\n $q(x_1, x_2, x_3) = a_1x_1^2 + a_2x_1 + a_3x_2^2 + a_4x_2 + a_4x_3x_3 + a_4x_4x_5 + a_4x_6$

\n \rightarrow

\n $S = \begin{pmatrix} a_{11} & a_{12}/2 & a_{13}/2 \\ a_{13}/2 & a_{12}/2 & a_{13}/2 \end{pmatrix}$

\nNB: q is diagonal $\Rightarrow S$ is diagonal: the q is diagonal.

\nNB: q is diagonal $\Rightarrow S$ is diagonal: the q is an integer, and the first column.

\nWB: q is diagonal $\Rightarrow S$ is diagonal: the q is an integer, and the first column.

\nWB: q is diagonal, $\Rightarrow S = \lambda_1x_1^2 + \lambda_2x_2^2 + \cdots + \lambda_nx_n^2$

\nHow does the help quadratic optimization?

\nOrthogonally diagonalize!

\n $q(x) = x^T Sx$

\nFind a diagonal matrix D and orthogonal matrix Q such that $S = QDQ$.

\nSo $q(x) = x^T QDQ$ for λ and λ are real numbers.

Let
$$
x = Q_{y}
$$
 : $\frac{1}{2}x^{2}$ and $\frac{1}{2}x^{3}$ is a change of variables
\n $q(x) = q(Q_{y}) = (Q_{y})^{T}QDQ^{T}(Q_{y})$
\n $= \frac{1}{2}q^{T}QQ^{T}DQ^{T}(Q_{y}^{T}) = \frac{1}{2}q^{T}D_{y}$
\nThis is no diagonal!
\n Q is orthogonal: $||x||=||Q_{y}||=||q||$
\nSo $||x||=1$
\n $q(x_{1},x_{2}) = \frac{1}{2}x_{1}^{2}+\frac{1}{2}x_{2}^{2}-\frac{1}{2}x_{1}x_{2}^{2}-\frac{1}{2}x_{1}x_{2}^{2}-\frac{1}{2}x_{1}x_{2}^{2}$
\nSubject to $||x||=1$
\n $q(x) = x^{T}(\begin{pmatrix} 1/2 & -5/2 \\ -5/2 & 1/2 \end{pmatrix})x$ as $S=\frac{1}{2}(\begin{pmatrix} 1 & -5 \\ -5 & 1 \end{pmatrix})$
\nOrthogonally diagonalize: $S=QDQ^{T}$ for
\n $Q=\frac{1}{12}(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix})y=\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$
\nSet $x=Q_{y}$:
\n $\begin{cases} x_{1} = \frac{1}{12}(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix})\begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} = \frac{1}{12}(\begin{pmatrix} -y_{1}+y_{2} \\ y_{1}+y_{2} \end{pmatrix})$
\n $\begin{cases} x_{1} = \frac{1}{12}(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix})\begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} = \frac{1}{12}(\begin{pmatrix} -y_{1}+y_{2} \\ y_{1}+y_{2} \end{pmatrix})$
\n $\begin{cases} x_{1} = \frac{1}{12}(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix$

Check:
\n
$$
q(x) = q(\frac{1}{2}x^{2}+y^{3}y^{2}+y^{2}y^{3})
$$

\n $=\frac{1}{2}x^{2}(y^{2}+y^{3}+y^{2}+y^{2}y^{2}-5\frac{1}{2}(y^{2}+y^{2}y^{2})+y^{2}y^{2}$
\n $=\frac{1}{4}y^{2}+ \frac{1}{4}y^{2}-\frac{1}{2}y^{2}+ \frac{1}{4}y^{2}+ \frac{1}{2}y^{2}+ \frac{1}{2}y^{2}+ \frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{4}x^{2}-\frac{1}{2}y^{2}+ \frac{1}{4}y^{2}+ \frac{1}{2}y^{2}-\frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{4}x^{2}-\frac{1}{2}y^{2}+ \frac{1}{4}x^{2}-\frac{1}{2}y^{2}-\frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{4}x^{2}-\frac{1}{2}y^{2}+ \frac{1}{2}y^{2}-\frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{2}y^{2}+ \frac{1}{4}x^{2}-\frac{1}{2}y^{2}-\frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{2}y^{2}+ \frac{1}{2}y^{2}-\frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{4}y^{2}+ \frac{1}{2}y^{2}-\frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{4}y^{2}-\frac{1}{2}y^{2}+ \frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{4}y^{2}+ \frac{1}{2}y^{2}-\frac{1}{2}y^{2}$
\n $=\frac{1}{4}x^{2}+ \frac{1}{4}y^{2}+ \frac{1}{2}y^{2}+ \frac{1}{2}y^{2}-\frac{1}{2$

Quadratic Optimization: To find the minimum/maximum of a quadratic form ^q x) subject to $\|x\| = 1$ (1) Write g(x)=x^TSx for a symmetric matrix 5 (2) Orthogonally diagonalize S = QDQ^T for $Q = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad Q = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ Eigenvectors Eigenvertus Order the eigenvalues so $\lambda_i \geq -2\lambda_n$ (3) The maximum value of $g(x)$ is the largest ergenvalue λ_i . It is achieved for $x = any$ unit λ_1 eigenvector The minimum value of $q(x)$ is the smallest eigenvalue In It is achieved for x = any unit In-eigenvector. NS [.] If $GM(N_i)$ ^z I then the only unit λ_i eigenvectors are $\pm \omega_i$. (only λ unit vectors are on any line $NB: x=Q_9$ diagonalizes q¹
q(x) = $\lambda_1 y_i^2 + \cdots + \lambda_{n} y_n^2$ $q(x) = \lambda_{1}y_{1}^{2} + \cdots + \lambda_{n}y_{n}^{2}$