NB: If A is a wide matrix (matrix (matrix then

$$A^{T}A$$
: now AA^{T} : maxin a smaller
So it's easier to compute eigenvalues & eigenvectors of
 $AA^{T}!$
IF A is wide, compute the SVD of A^T.
Eg: $A = \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix}$
 $A^{T}A = \begin{pmatrix} 200 & -50 & 200 & -50 \\ -50 & 125 & -50 & 125 \\ 200 & -50 & 200 & -50 \\ -50 & 125 & -50 & 125 \end{pmatrix}$ yithes!
Let's compute the SVD of A^T instead.
 $AA^{T} = \begin{pmatrix} 400 & -100 \\ -100 & 250 \end{pmatrix}$ $p(\lambda) = (\lambda - 450)(\lambda - 200)$
 $\lambda_{1} = 450 \Rightarrow a_{1} = 552$ $u_{1} = \frac{1}{55} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $V = \frac{1}{5} A^{T} = \frac{1}{50} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$
 $A^{T} = 15J_{2}$ visit + 10J_{2} us v_{1} To if and vectors
 $A = 15J_{2}$ $u_{1}v_{1}$ + 10J_{2} $u_{2}v_{1}$ To if $A^{T} = 1$ and vectors
 $a_{1}A^{T} = 1$

Procedure to Compute A= (NZIVT:
(1) Compute the singular values and singular vectors
SUM-SURS SUMMED GUILTS GUILTS GUILTS
as before
(2) Find orthonormal bases
SUREY-SUMS for NullAT
SUREY-SUMS for NullAT
SUREY-SUMS for NullA
USING Gran-Schmidt.
(3) N= (Un-ur when much) V= (VI-VIE VIE - VIE)

$$\sum_{i=1}^{2} {G_{i} G_{i} G_{i}} (Some size as A)$$

Proof: Use the outer product version of matrix mult:

$$U\Sigma^{T}V^{T} = \left(u_{1}^{1} \dots u_{m}^{n}\right) \begin{pmatrix} \sigma_{1} & \sigma_{0} \\ -v_{m} \end{pmatrix} \begin{pmatrix} -v_{1} \\ -v_{m} \end{pmatrix} \begin{pmatrix} -v_{1} \\ -v_{m} \end{pmatrix} \begin{pmatrix} -\sigma_{1} & \sigma_{0} \\ -v_{m} \end{pmatrix} \\ = \left(u_{1}^{1} \dots u_{m}^{n}\right) \begin{pmatrix} -\sigma_{1} & \sigma_{0} \\ -\sigma_{1} & \sigma_{0} \\ -\sigma_{0} \end{pmatrix} \\ = \sigma_{1}^{n} u_{1}^{n} u_{1}^{n} + \dots + \sigma_{1}^{n} u_{1}^{n} + 0 + \dots + 0 \quad (1 + 1)^{n}$$

$$AB: A = UEVT \text{ contains full orthogonal diagonalizations}$$
of ATA and of AAT:

$$ATA = V\begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix} VT \quad AAT = U\begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix} UT$$

$$DT \text{ also contains orthogonal bases for all four subspaces:}$$

$$\int \sigma^{T} \int \sigma^{T} & \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix}$$

$$U = \begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix}$$

$$I = \begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix}$$

$$I = \begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix}$$

$$I = \begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix}$$

$$I = \begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T} & \sigma^{T} & \sigma^{T} \end{pmatrix}$$

$$I = \begin{pmatrix} \sigma^{T} & \sigma^{T} & \sigma^{T} \\ \sigma^{T}$$

The Pseudo-Inverse
This is a matrix At that is the "best possible" substitute
for At when A is not invertible.
• Works for non-square matrices:
if A is man then At is nam
• At b is the shortest least-squares solution of Ax=b.
First let's do diagonal matrices.
Det: If Z is an man diagonal motion with nonzero
diagonal entries ou-ser, its pseudo-inverse Zt is
the nam diagonal matrix with nonzero diagonal
entries
$$\pi'_{J-1} - \sigma'_{T}$$
.
 $I = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow I = \begin{pmatrix} V_{3} & 0 & 0 \\ 0 & V_{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$
New let's do general matrices.

Def: Let A be an maximatrix with SVD

$$A = \sigma \cdot u_1 v_1^T + \cdots + \sigma \cdot u_r v_r^T$$
 $A = U Z V^T$
The pseudo-inverse of A is the name matrix
 $A^{\dagger} = \frac{1}{\sigma_1} v_1 u_1^T + \cdots + \frac{1}{\sigma_r} v_r u_r^T$ $A^{\dagger} = V Z_1^{-\dagger} U^T$
This has the same singular vectors (switch right & left)
and reciprocal singular values.

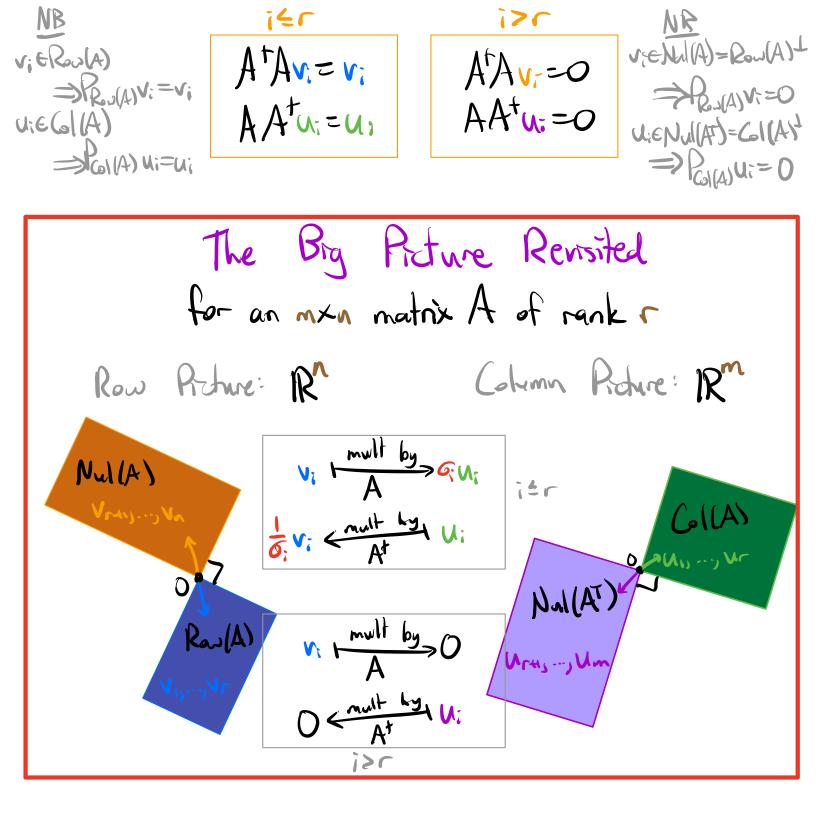
$$\begin{aligned}
 E_{3} = A = \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix} = 15J_{2}u_{1}v_{1}^{T} + 10J_{2}u_{2}v_{2}^{T} \\
 for & U_{1} = \frac{1}{J_{5}}\binom{2}{-1} & V_{1} = \frac{1}{J_{10}}\binom{-2}{-2} \\
 U_{2} = \frac{1}{J_{5}}\binom{1}{2} & V_{2} = \frac{1}{J_{10}}\binom{2}{2} \\
 U_{2} = \frac{1}{J_{5}}\binom{1}{2} & V_{2} = \frac{1}{J_{10}}\binom{2}{2} \\
 = \frac{1}{J_{5}}J_{5}zv_{1}u_{1}^{T} + \frac{1}{J_{0}}J_{5}zv_{2}u_{2}^{T} \\
 = \frac{1}{J_{5}}J_{5}zv_{1}u_{1}^{T} + \frac{1}{J_{0}}J_{5}zv_{2}u_{2}^{T} \\
 = \frac{1}{J_{5}}\binom{-4}{2} \cdot \frac{1}{J_{10}}\binom{-2}{2} \cdot \frac{1}{J_{5}}\binom{2}{2} - \binom{1}{2} + \frac{1}{J_{0}}J_{5}z \cdot \frac{1}{J_{5}}\binom{2}{2} \cdot \frac{1}{J_{5}}\binom{1}{2} - \frac{1}{J_{5}}\binom{2}{2} \cdot \frac{1}{J_{5}}\binom{1}{2} \\
 = \frac{1}{J_{50}}\binom{-4}{2} \cdot \frac{2}{-1} + \frac{1}{J_{00}}\binom{2}{2} \cdot \frac{2}{4} = \frac{1}{J_{00}}\binom{-5}{2} \cdot \frac{10}{J_{0}}\binom{1}{2} \cdot \frac{10}{J_{0}}\binom{1}{2} \cdot \frac{10}{J_{0}}\binom{1}{2} \cdot \frac{10}{J_{0}}\binom{1}{2} \\
 = \frac{1}{J_{0}}\binom{-4}{2} \cdot \frac{2}{-1} + \frac{1}{J_{00}}\binom{2}{2} \cdot \frac{2}{4} = \frac{1}{J_{00}}\binom{-5}{2} \cdot \frac{10}{J_{0}}\binom{1}{2} \cdot \frac{1}{J_{0}}\binom{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{J_{0}}\binom{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{J_{0}}\binom{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$$

So what are AtA and AAt if A is not invertible?
Ara = projection onto Row(A)
AAt = projection onto Col(A)
Proof: A At = (UE'VT)(VZ!+UT) = UE'(VTV)E'+UT
= UE'(UT) = U
$$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha_0 \end{pmatrix} \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & \alpha_0 \end{pmatrix} U^{T}$$

= $\begin{pmatrix} u_1 & \dots & u_n \end{pmatrix} \begin{pmatrix} -u_1^{T} - \\ 0 & \alpha_0 \end{pmatrix}$

$$A^{\dagger}A_{v_{i}} = A^{\dagger} \cdot 0 = 0 \qquad (v_{i} \in Nul(A))$$

$$AA^{\dagger}u_{i} = A \cdot 0 = 0 \qquad (u_{i} \in Nul(A^{\dagger}) = Nul(A^{\dagger}))$$



Recall: A projection matrix Pr is the identity matrix $rall of \mathbb{R}^n$

ensequence:
• At A = In
$$\Longrightarrow$$
 A two full column reacts
(Row(A) = Nul(A)¹ = 503 = Rⁿ)
• AAt = I_n \Longrightarrow A two full row reacts
(Col(A) = Rⁿ)
(matrix B with BA=In)
(B: This shows that:
• A two full column reacts A columits a left invorce
• A two full column reacts A columits a right invorce
(See HW for the "E" implications.) (matrix B
cith AB=In)
Eq. (A = (-10 10 -10 10) At = $\frac{1}{300} \begin{pmatrix} -5 & 10 \\ 10 & 5 \\ 10 & 10 \end{pmatrix}$
At A = $\frac{1}{300} \begin{pmatrix} -5 & 10 \\ 10 & 5 \\ 10 & 10 \end{pmatrix} \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \end{pmatrix}$
At = $\frac{1}{300} \begin{pmatrix} -5 & 10 \\ 10 & 5 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix} \begin{pmatrix} -5 & 10 \\ 10 & 5 & 10 \\ 10 & 10 & 5 & 10 \\ 10 & 10 & 5 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 0 & 1/2 \end{pmatrix}$
At = $\frac{1}{300} \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \\ 10 & 10 & 5 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
(Col(A) = R² = projection is I₂)

Es
$$A = \begin{pmatrix} 1 & 1 \end{pmatrix} = 2 \cdot \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 2 \cdot \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$