Subspaces leastsquares Orientation: We're developing machinery to "almost solve" Axeb Today: give new names to everything we've been long So far, to every matrix A ve have associated two spans 1) The span of the columns all b such that $Ax = b$ 2) the solution set of $A_{x}=0$ is consistent The first arises naturally as a span $/$ it is already in parametric form. The second required Work (elimination) to write as a span $-$ it is a solution set, so it is in implicit form The notion of subspaces puts both on the same footing. This formalizes what we mean by linear space containing O". Fast-forward: Fsame picture Subspaces are spans and Spans are subspaces Why the new vocabulary word? When you say "Span" you have a spanning set of vectors in mind parametric form This is not the case for the solutions of $Ax = C$

Subspaces allow us to discuss spans without computing a spanning set. Subspace = Span { ???} They also give a criterion for a subset to be a span. Det: A subset of IR's any collection of points E_S (a) (b) (c) $\{(x,y): x^2+y^2=1\}$ $\{[x,y]: x,y\ge0\}$ $\{[x,y]: x\ge0\}$ Def: A subspace is a subset V of \mathbb{R}^n satisfying: 10 [closed under $+1$ If $u, v \in V$ then wrve V (z) [closed under scalar x] If ueV and ceR then ceV (3) [contains $0J$ OEV These conditions characterize linear spaces containing O among all subsets $NB: If V is a subspace and v\in V then 0=0v$

is in V by (2), so (3) just nears V is nonempty

E₃: In the subset above:
\n(a) fails (1), (2), (3)
\n(b) fails (2) : (1)6V but
$$
-|-|.|
$$
) $\notin V$
\n(c) fails (1): (a), (1)6V but (1)4V
\nHere are two "principal" examples of subspaces:
\nE₃: {03 R a subspace
\n(1) 0+0=06 {03 V
\n(2) c 0=06 {03 V
\n(3) 0=503
\n(3) 0=503
\nNB 803=5pan13 : it is a span

Eg: IR's all vectors of size
$$
n_5
$$
 is a subspace
\n(i) The sum of two vectors is a vector.
\n(2) A scalar times a vector is a vector
\n(3) 0 is a vector.
\nNB IRⁿ= span{e₁, e₂, ..., e_n}
\n e_{12} $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e_2 $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$... e_n = $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Eg: V =
$$
\{x_1, y_1, z\}
$$
 satisfy $\frac{1}{2}\}$

\nThe defining condition tells you if (x_1y_1z)

\nis in V or not.

\n(1) Use have to show that if $u=(x_1y_1,z_1) \in V$

\nand $\sqrt{x}(x_1y_1,z_1) \in V$.

\nand $\sqrt{x}(x_1y_1z_1) \in V$.

\nand $\sqrt{x}(x_1y_1z_1) \in V$.

\nand $\sqrt{x}(x_1y_1z_1) \in V$.

\nSince $u + v$ satisfies the *decomp* condition, $\sqrt{x}(u + v)$.

\nSince $u + v$ satisfies the *decomp* condition, $\sqrt{x}(u + v)$.

\nSince $u = \sqrt{x}(y_1z_1) \in C(x_1y_1z_1) \in C(x_1y_1z_1) \in V$.

\nSince $u = \sqrt{x}(y_1z_1) \in C(x_1y_1z_1) \in C(x_1y_1z_1) \in V$.

\nThus, $\sqrt{x}(y_1z_1) \in C(x_1y_$

NB: This means V is a span!
How to find a spanning set?
How do not have an this later.
J. order to show that a subset is not a subset of the axioms.
Subspace, you just have to produce one
countercxample to one of the axioms.
Let 'V = { (x, y) : $\times 20$, $\times 30$
(2) (5) $\sqrt{20}$, $\sqrt{20}$
(3) $\sqrt{20}$, $\sqrt{20}$
Int (1) (1, 1) $\sqrt{6}$ (120, 120)
Int a subset of a subspace by verifying the axioms – but you'll be an its node.
But (1) (1, 1) $\sqrt{6}$ (120, -120)
Int a subspace by verifying the axioms – but you'll be an is not a subspace.
Part: A span is a subspace.
Part: A span is a subspace.
Part: A sign is a binomial to a vertex of the x-axis.
Let 'V = Sron: S.V. ... Vn?
Here the defining condition for a vector of the x-axis.
Now, Yn.
When Yn.

\n- (1) We need to show that if
$$
C_{4}
$$
 + \cdots + C_{4} or $+ \cdots$ or 3 or 1 . The sum of the line 1 to 1

Def: The column space of a matrix A is the span of its columns.
\nNotation:
$$
Col(A) = SpaS, cos \neq A
$$
?
\nThis is a subspace of \mathbb{R}^m m = # roots
\n(each column has m entries)
\n $cos \neq 0$
\nSince a column piece is a subspace.
\nSubspace, a column space is a subspace.
\nE₃: $Col\{\frac{1}{3} \pm \frac{1}{6} \cdot \frac{1}{3} \} = Span\{\frac{1}{3}\} \{\frac{1}{3}\} \{\frac{1}{3}\}$?
\nThus $Col\{\frac{1}{3} \pm \frac{1}{6} \cdot \frac{1}{3} \} = Span\{\frac{1}{3}\} \{\frac{1}{3}\} \{\frac{1}{3}\}$?
\nThus $Col\{\frac{2}{3}\}, \{\frac{3}{3}\} \} = Col\{\frac{2}{3} \cdot \frac{1}{3}\}$

 $NB: |G(A)=$ { $Ax: x6$ ||2 because Ax is just a LC of the cols of A

Translation of the column picture criterion for constant:

\n
$$
Ax = b
$$
\n
$$
B = Col(A)
$$
\nFor each x is x and x

$$
\begin{bmatrix}\n1 & 2 & 2 & 1 & 0 \\
2 & 4 & 1 & -1 & 0\n\end{bmatrix}\n\xrightarrow{RREF} \begin{bmatrix}\n1 & 2 & 0 & -1 \\
0 & 0 & 1 & 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nx_1 = -2x_2 + x_4 \\
x_2 = x_4 \\
x_4 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_2 = x_4 \\
14x_3 = x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 0 & 0 \\
1 &
$$

Explicit vs Parametric form:

\n\n- $$
C_{0}(A)
$$
 is a span:
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{2}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{3}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{4}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$
\n- $C_{5}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{6}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{7}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{8}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{9}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- <

E₃:
$$
V = \{ (x, y, z) : x + y = z \}
$$

\nThis is defined by the equation $x + y = z$.
\nrewnite: $x + y = z = 0$
\n $\rightarrow V = Nul \left[1 - 1 \right]$
\nE₃: $V = \{ \begin{pmatrix} 3a + b \\ a - b \end{pmatrix} : a, b \in \mathbb{R} \}$
\nThis is described by parentheses. Rewrite:
\n $\begin{pmatrix} 3a + b \\ a - b \end{pmatrix} = a \begin{pmatrix} 3 \\ b \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \end{pmatrix} = G \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$
\n $\rightarrow V = Span \{ \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \} = G \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$
\nThis is also have you should verify that a subset
\nis a subspace.
\nOf course, if V is not a subspace then you can't
\nwrite it as: $Gl(A)$ or $Nul(A)$. In this case you
\nshould check that it fails one of the axioms.

Eg: Is
$$
V=f(x,y,z):x+y=z+13 = subspace?
$$

Na, (P3) $lnis: O+O+O+1, so O#V.$