Properties of Projections:
(1)
$$b_{V} = b \iff b_{V} = 0 \iff b \in V$$

(2) $b_{v} = 0 \iff b = b_{v+} \iff b \in V^{\perp}$
(3) $(b_{v})_{v} = b_{v}$

Eq: last time: if
$$b = \binom{1}{1} \quad V = \binom{1}{2} \binom{1}{2} \cdot \frac{1}{4}$$

then we computed $b_{V} = \binom{1}{3}$ so we should
have beV. Let's check:
 $\binom{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \binom{1}{4} \stackrel{\text{PVF}}{\longrightarrow} \binom{1}{2} = \binom{2}{-1} \cdot \frac{1}{3} + 1 \cdot \frac{1}{4} \binom{-1}{4}$
Taking $x_{3}=0$ gives a solution of the vector eqn:
 $\binom{1}{4} = \frac{2}{3} \binom{1}{4} - \frac{1}{3} \binom{-1}{-1}$
So b is indeed in $V = \binom{1}{4} \binom{1}{4} \cdot \frac{1}{4}$

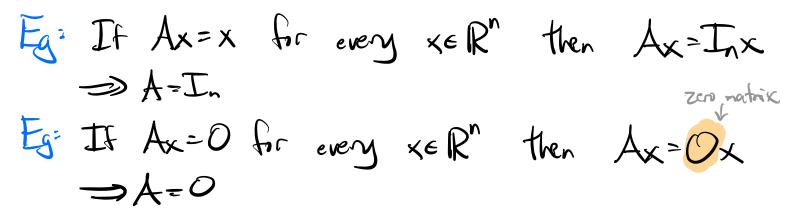
Projection Matrices

Recall: IF V=Col(A) then you compute by
us follows:
(1) Solve the normal equation ATAX=ATD
(2) by=Ax for any solution
$$\hat{x}$$
.
Lemma: A has full column rank if & only if
ATA is invertible.
Proof: Note ATA is square.
A has FCR
 \implies Nul(A)=for (FCR criteric)
 \implies Nul(A)=for (FCR criteric)
 \implies Nul(AA)=for (FCR criteric)
 \implies ALU(ATA)=for (FCR criteric)
 \implies ATA is invertible (invertibility criteric)
This case, ATAX=ATB has the unique solution
 $\hat{x}=$ (ATA)TATB, so $b_{x}=A\hat{x}=A(ATA)TATB$.

Eq:
$$V = Col(A)$$
 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $A^{T}A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$
 $(A^{T}A)^{-1} = \begin{pmatrix} -1 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 3/2 \end{pmatrix}$
 $A(A^{T}A)^{-1}A^{T} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 3/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $= \begin{pmatrix} 0 & V_{2} \\ 0 & V_{2} \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} V_{2} & 1/2 & 0 \\ 1/2 & V_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$
So if $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ then
 $b_{Y} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & V_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$
Observation: $P_{y} = A(A^{T}A)^{T}A^{T}$ is an memoratix
that computes orthogonal projections onto
 $V = Col(A)^{Y}$ $P_{y}b = b_{Y}$ for all $b \in \mathbb{R}^{m}$.

Fact: If A&B are non matrices and Ax=Bx for all X, then A=B.

Indeed, Ac= it col of A, so actually a matrix is determined by its action on the unif coordinate vectors.



What if V=Col(A) but A does not have full column rank? How to compute Pr? Eq: $V = G(A) \quad A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix}$ This A does not have full column rank? $A \xrightarrow{\text{ref}} \begin{pmatrix} 1 & -(& -1) \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{pmatrix} \qquad \text{pivots}$ This says that $\{(\frac{1}{2}), (-\frac{1}{2})\}$ is a basis for V. This means: $(i) \quad \bigvee = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \right\} = \left(\operatorname{ol} \left(\begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \right) \right\}$ $(2) \{(\frac{1}{2}), (-\frac{1}{2})\}$ is LI $\sim \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}$ has full column roak. So replace A by $B = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}$: $\beta^{T}B = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 3 \end{pmatrix}$ $\left(\begin{array}{c} B^{\dagger}B \end{array} \right)^{-1} = \left(\begin{array}{c} 1/6 & 0 \\ 0 & 1/3 \end{array} \right) = \frac{1}{6} \left(\begin{array}{c} 1 & 0 \\ 0 & 2 \end{array} \right)$

$$P_{v} = B(B^{T}B)^{-1}B^{T} = \frac{1}{6}\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & -1 \end{pmatrix} = \frac{1}{6}\begin{pmatrix} 3 & 0 & 3 \\ 0 & 6 & 0 \\ 3 & 0 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

$$S = b = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

$$NB = b_{v} & S = P_{v}b = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}\begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}\begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$

$$NB = b_{v} & S & P_{v} & depend only on V_{s} \text{ not the way you}$$

$$expressed \quad V \text{ as a Col space or Null space.}$$

$$One you've fixed V_{s} then \quad P_{v} is a matrix with honest numbers in it, that you can compute in different ways depending on how V is expressed.$$

$$NB = What if \quad A is a 3x3 matrix with FCR?$$

$$Then \quad A has FRR \quad tw \implies V = Col(A) = IR^{7}.$$

$$In \quad this case \quad b_{v} = b \quad For any \quad b \quad (because beV)$$

$$S = P_{v} = T_{s}. \quad More on \quad this \quad later.$$

Procedure for Computing Ry:
(1) Find a basis
$$\{v_1, \dots, v_n\}$$
 of V
(2) $B = (v_1' \dots v_n)$
(3) $P_V = B(B^T B)^{-1} B^T$
Eq: Suppose V = Span $\{v_i\}$ is a line.
 $B = v$ (matrix with one column)
 $B^T B = v \cdot v$ (a scalar)
 $B(B^T B)^{-1} B^T = v(v \cdot v)^{-1} v^{-1} = \frac{v \cdot v}{v \cdot v}$
Projection Matrix onto a Line
IF V = Span $\{v_i\}$ then $P_V = \frac{v \cdot v}{v \cdot v}$

(3) For any vector b,

$$P_v^2 b = P_v(P_v b) = P_v(b_v) = (b_v)_v$$

This equals by because bieV already
 $= b_v = P_v b$
Since $P_v^2 b = P_v b$ for all vectors b, $P_v^2 = P_v$.
(4) For any vector b,
 $(P_v + P_{+1})b = P_v b + P_{2}b = b_v + b_{2}a$
This equals b because $b = b_v + b_{2}a$ is the
orthogonal decomposition.
 $= b = Imb$
Since $(P_v + P_{2})b = T_m b$ for all vectors b,
 $P_v + P_{v1} = T_m$.
(5) Choose a basis for V~> $P_v = B(B^T B)^- B^T$
 $P_v^T = (B(B^T B)^- B^T)^- B^T = B(B^T B)^- B^T = P_v$

Lost time: if
$$V = Nul(A)$$
, we computed by by
first computing the projection onto $V^{\perp} = Gl(A^{\dagger})$,
then using $b_r = b - b_r L$.

We can do the same for projection matrices, using (5):

Procedure: To compute R' for V=NullA):
(1) Compute R' for V= Col(AT)
(2) P' = Im - P'
Compute R' for V=Nul(1 2 1).
In this case, V¹ = Col(¹/₂) is a line:
P' =
$$\frac{1}{(\frac{1}{2})(\frac{1}{$$

$$= \frac{1}{6} \begin{pmatrix} -2 & -1 \\ 2 & -2 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$= \frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}$$

$$\rightarrow Be intelligent about what you actually have to compute! Ask yourself: "is it easier to compute Pv or Pv2?"
Note however that both computations gave the same answer!
$$V = Nul(1 \ 2 \ 1) \xrightarrow{15^{+}}_{ty} P_{y} = \frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}$$

$$V = Col \begin{pmatrix} -2 & -1 \\ 2 & 1 \end{pmatrix} \xrightarrow{15^{+}}_{ty} P_{y} = \frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}$$

$$P_{v} = Col \begin{pmatrix} -2 & -1 \\ 2 & 1 \end{pmatrix} \xrightarrow{15^{+}}_{ty} P_{y} = \frac{1}{6} \begin{pmatrix} 5 & -2 & -1 \\ -2 & 2 & -2 \\ -1 & -2 & 5 \end{pmatrix}$$

$$P_{v} = right rights to V, not its expression as a Col or Null space (ar anything else).$$$$