Symmetric Matrices & the Spectral Theorem
Recall: S is symmetric if S=ST (=> square)

Super-important example: the matrix of column dot products $S = ATA \text{ for any matrix } A \left[(ATA)^T = ATA^{TT} = ATA \right]$

Eg: $S = \frac{1}{9} \begin{pmatrix} 5 - 8 & 10 \\ -8 & 11 & 2 \\ 10 & 2 & 2 \end{pmatrix}$

[demo]: what do you notice about the eigenspaces?

Observation 0: for any vectors v and ω , $v \cdot (S\omega) = v^T S\omega = (S^T v)^T \omega = (S^T v$

Observation 1:

Eigenvectors of S with different eigenvalues are orthogonal.

Proof: Say $S_{V_1} = \lambda_1 V_1$ $S_{V_2} = \lambda_2 V_2$ $\lambda_1 \neq \lambda_2$ $V_1 \cdot (S_{V_2}) = V_1 \cdot (\lambda_2 V_2) = \lambda_2 V_1 \cdot V_2$ $(S_{V_1}) \cdot V_2 = \lambda_1 V_1 \cdot V_2$

$$\lambda_{1}, \lambda_{2}, \lambda_{3} \Rightarrow (\lambda_{1}, \lambda_{2}) = 0$$

$$\lambda_{1}, \lambda_{2}, \lambda_{3} \Rightarrow (\lambda_{1}, \lambda_{2}) = 0$$

$$\lambda_{2}, \lambda_{3}, \lambda_{4} \Rightarrow \lambda_{3}, \lambda_{4} \Rightarrow \lambda_{5}, \lambda_{5} \Rightarrow \lambda$$

Observation 2:

All eigenvalues of S are real.

Proof: Say Sv=2v and 2 is not real.

Then $\lambda \neq \bar{\lambda}$. Conjugate eigenvalue: $S \bar{\nu} = \bar{\lambda} \bar{\nu}$.

Observation 1 => v·v=0. But

$$\Lambda = \begin{pmatrix} \pm^{\nu} \\ \pm^{i} \end{pmatrix} \qquad \underline{\Lambda} = \begin{pmatrix} \pm^{\nu} \\ \pm^{i} \end{pmatrix}$$

= |21/2+ ···+ |2/2 > 0

So this can't happen.

Fact: It S is symmetric and λ is an eigenvalue, then $AM(\lambda) = GM(\lambda)$.

(The proof requires ideas from abstract linear algebra)

Consequence: S is diagonalizable over the real numbers! Moreover, there is an orth-normal eigenbasis.

Eg:
$$S = \frac{1}{9} \begin{pmatrix} 5 - 8 & 10 \\ -8 & 11 & 2 \\ 10 & 2 & 2 \end{pmatrix}$$
 $\rho(\lambda) = -(\lambda - 1)(\lambda + 1)(\lambda - 2)$

Eigenvectors:

Envectors:
$$\lambda = 1 \quad \Rightarrow \quad \omega_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \qquad \lambda = 2 \quad \Rightarrow \quad \omega_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

$$\lambda = -1 \quad \Rightarrow \quad \omega_2 = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} \qquad \lambda = 2 \quad \Rightarrow \quad \omega_3 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

 $\omega_1 \cdot \omega_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -2 \end{pmatrix} = 0$

$$\omega_1, \omega_3 = \left(\frac{5}{5}\right) \cdot \left(\frac{2}{5}\right) = 0$$

So {w, w, w, s} is an orthogonal eigenbasis.

To make it orthonormal, you have to divide by the lengths to make then unit vectors:

$$\sim 3 \left\{ \frac{1}{3} \left(\frac{2}{5} \right), \frac{1}{3} \left(\frac{2}{5} \right) \right\}$$

is an orthonormal eigenbosis.

orthogonal

 $\omega^3 \cdot \omega^3 = \begin{pmatrix} 5 \\ -5 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -5 \\ 5 \end{pmatrix} = 0$

Matrix fom?

$$S = QDQ^{-1} \quad \text{for} \quad Q = \frac{1}{3} \begin{pmatrix} 1 & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$

$$=QDQ^{\mathsf{T}} \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Recall: A square matrix Q with orthonormal columns
To called orthogonal. Then $Q^TQ = I_{\Lambda} \implies Q^T = Q^{-1}.$

Spectral Theorem: A real symmetric matrix S has an orthonormal eigenbasis of real eigenvectors: S=QDQT

for an o-thogonal matrix Q and a dragonal

Fast-Forward: The SVD is basically the spectral theorem as applied to S=ATA.

Eg:
$$5 = \begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$
 $\rho(\lambda) = -(\lambda - 4)(\lambda + 2)^2$

Eigenspaces:

Figurspaces.

$$\lambda = 4 \implies \text{Span } \{(\frac{1}{2})\}$$
 $\lambda = 2 \implies \text{Span } \{(\frac{1}{2}), (\frac{-2}{2})\}$

Check: $(\frac{1}{2}) \cdot (\frac{-1}{2}) = 0$
 $(\frac{-1}{2}) \cdot (\frac{-2}{2}) = 2 \neq 0$
 $(\frac{-1}{2}) \cdot (\frac{-2}{2}) = 2 \neq 0$

That's ok - (3) and (3) have the same eigenvalue.

So how do we produce an orthonormal eigenbasis? Have to use Gram-Schmidt to find an orthonormal basis of the -2-eigenspace.

$$\omega_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

$$\omega_2 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

Check:
$$(-1) \cdot (-1) = 0$$
 $(-1) - (1) = 0$

$$S_{0} = \left\{ \frac{1}{16} \left(\frac{1}{2} \right), \frac{1}{12} \left(\frac{1}{6} \right), \frac{1}{18} \left(\frac{1}{1} \right) \right\}$$
 is an

orthonormal eigenbasis, and S=QDQT for

$$Q = \begin{pmatrix} 1/\sqrt{6} & -1/\sqrt{2} & -1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ 2/\sqrt{6} & 0 & 1/\sqrt{3} \end{pmatrix} \qquad D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Procedure to Orthogonally Diagonalize a Real Symmetric Matrix S:

- (1) Dragonalize S. (it is automatically diagonalizable)
- (2) Normalize your eigenvectors/run Gram-Schmidt if GM(2) ≥ 2.
- (3) Put them together -> orthonormal eigenbasis!

Es:
$$S = \frac{1}{2} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix}$$
 $p(\lambda) = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$
 $\lambda_1 = 2 \rightarrow \omega_1 = \frac{1}{12} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\lambda_2 = 3 \rightarrow \omega_2 = \frac{1}{12} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
 $S = QDQ^T$ for $Q = \frac{1}{12} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$
 $MB: Q = \begin{pmatrix} (os(45^\circ) & -sm(45^\circ) \\ sm(45^\circ) & (os(45^\circ) \end{pmatrix}$
So $Q_X = \begin{pmatrix} (rotote \times CCU & 45^\circ) \end{pmatrix}$
Reture: $[demo] = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ $COT = Q^{-1}$ $COT =$

The picture is the same as before, but it's easier to visualize multiplying by the orthogonal mostrix Q (it preserves lengths & angles).

Exercise (outer product form): If Tu, ..., und is an orthonormal eigenbasis of S and Sui= liui, so S=QDQT for $Q = \begin{pmatrix} y_1 & y_2 \\ y_1 & y_2 \end{pmatrix}$

5= 7. u.u.T + 2 zuzuz++++++ InununT

Compare: if Pr is a projection matrix, you can write Pr= QQT for Q= (d,...da) d=dm(V). ~ Pr = u,u,T+...+ u,udT.

(This is a special case: $\lambda_1 = \dots = \lambda_d = 1$ and $\lambda_{d+1} = \dots = \lambda_n = 0$. Recall Pr is symmetric.)

Positive-Definite Symmetric Matrices

Recall: S=ATA is a very important example of a symmetric matrix!

Observation: If I is an eigenvalue of S=ATA with eigenvector V then

V. Sv = v. yn = 2||v||s

 $V \cdot S_{V} = V \cdot T_{V} = V \cdot T_{V} = V \cdot S_{V} = V \cdot$

111112 = 11AV12

Consequence: If λ is an eigenvalue of S=ATA then $\lambda \geq 0$. Moreover, $\lambda = 0 \Longrightarrow \|Av\| = 0$ $\Longrightarrow ve Nul(A)$, so if A has full column rank then $\lambda \geq 0$.

Thus ATA has only positive eigenvalues when A has full column rank. This condition is so important that it has a name.

Positive-definiteness is an important condition. We really want to be able to check it without computing eigenvalues.

Criteria for Positive - Definiteness:
Let S be a symmetric modrix.
The Following Are Equivalent:
(1) S is positive-definite
(2) xT5x>0 for all x \$0 ("positive energy
(3) The determinants of all a upper-left
submatrices are positive:
$S=\begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix} \rightarrow det \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix} > 0$
$det \begin{pmatrix} 7 & 3 \\ 2 & 6 \end{pmatrix} > 0$
det (7) > 0
(4) S=ATA for a matrix A with
full column rank
(5) S has an LN decomposition where
U has positive diagonal entries. (no now swaps needed!)

(5) is fastest: its an elimination problem.

Remarks:

(2) In physics, XTSX sometimes measures the energy of a system.

In any case, if v is an eigenvector with eigenvalue & then

VTS = V. YV = 2 | 11 | 2

50 (2) ⇒> >> >> O for all >>, 50 (2) ⇒>(1).

Conversely, $(1) \Rightarrow (2)$ because if $x \neq 0$ then $Q^Tx \neq 0$, so if $Q^Tx = \begin{pmatrix} y_1 \\ y_n \end{pmatrix}$ then

 $x^{T}Sx = x^{T}QDQ^{T}x = (Q^{T}x)^{T}D(Q^{T}x)$

 $= (y_1 - y_n) \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \dot{y}_n \end{pmatrix}$

= 1/4/5+--+ yudus >0.

(3) Determinants are magic.
(Also see the LDLT supplement.)

(4) (4) => (1): we did this above.

(1) => (4): This is the Cholesky decomposition:
next time

(5) This is the LDLT decomposition: next time.

Criteria for Positive - Semidefiniteness:

Let S be a symmetric matrix.

The following are equivalent:

(1) S is positive - semidefinite

(2) xTSx > 0 for all x + 0

13) The determinants of all n upper-left

submatrices are nonnegative.

(4) S=ATA for a matrix A

Consequence: It A is any matrix then ATA is positive semidefinite. In particular, it has nonnegative eigenvalues.