NB: If A is a wide matrix (matrix (matrix then

$$A^{T}A$$
: nxn AA^{T} : mxm a smaller
So it's easier to compute eigenvalues & eigenvectors of
 $AA^{T}!$
IF A is wide, compute the SVD of A^T.
Eg: $A = \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix}$
 $A^{T}A = \begin{pmatrix} 200 & -50 & 200 & -50 \\ -50 & 125 & -50 & 125 \\ 200 & -50 & 200 & -50 \\ -50 & 125 & -50 & 125 \end{pmatrix}$ yithes!
Let's compute the SVD of A^T instead.
 $AA^{T} = \begin{pmatrix} 400 & -100 \\ -100 & 250 \end{pmatrix}$ $p(\lambda) = (\lambda - 450)(\lambda - 200)$
 $\lambda_{1} = 450 \Rightarrow a_{1} = 552$ $u_{1} = \frac{1}{55} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $V = \frac{1}{5} A^{T} u_{1} = \frac{1}{50} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$
 $A^{T} = 15J_{2} v_{1}u_{1} + 10J_{2} u_{2}v_{1}^{T}$ $v_{1} = \frac{1}{5} A^{T} u_{2} + \frac{1}{50} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ u_{1} or right-
 $y_{1} = 15J_{2} v_{1}u_{1}^{T} + 10J_{2} u_{2}v_{1}^{T}$ $v_{2} = A^{T} u_{1} = \frac{1}{5} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $v_{1} = 1$ for vectors
 $A^{T} = 15J_{2} u_{1}v_{1}^{T} + 10J_{2} u_{2}v_{1}^{T}$ $v_{2} = A^{T} u_{1} = \frac{1}{5} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

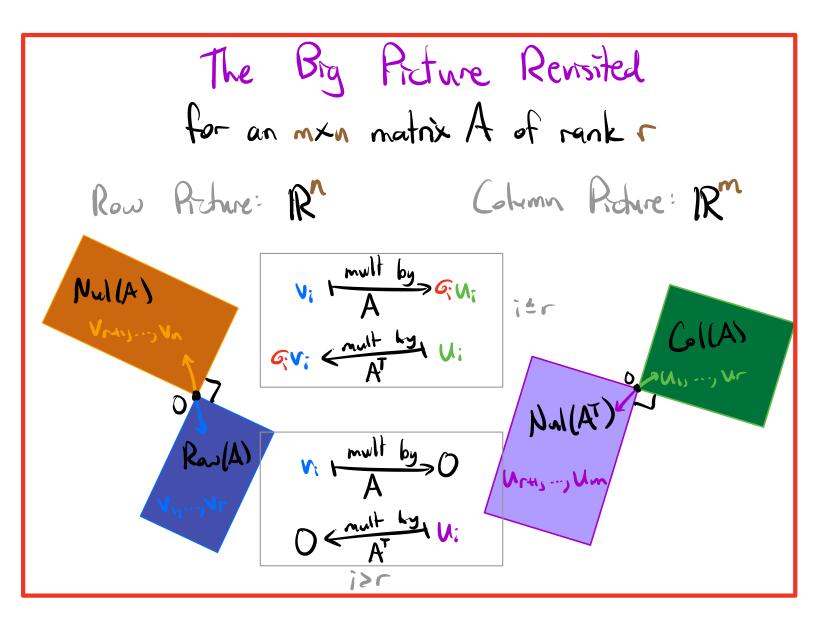
Proof: Use the outer product version of matrix mult:

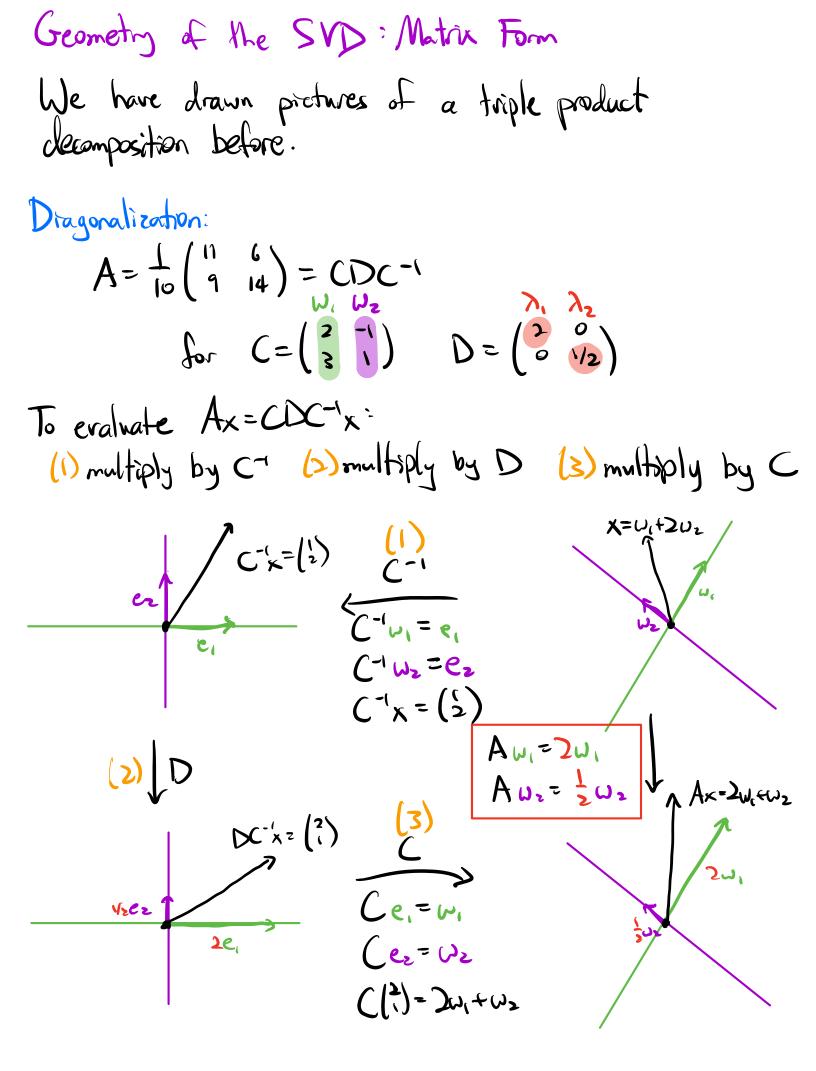
$$U\Sigma^{T}V^{T} = \left(u_{1}^{1} \dots u_{m}^{1}\right) \begin{pmatrix} G_{1} & \dots & G_{n} \end{pmatrix} \begin{pmatrix} -v_{1} & \dots & \dots \\ -v_{m} \end{pmatrix} \begin{pmatrix} -v_{1} & \dots & \dots & \dots \\ -v_{m} \end{pmatrix} \begin{pmatrix} -\sigma_{1}v_{1} & \dots & \dots & \dots \\ -\sigma_{n}v_{n} & \dots & \dots & \dots \\ = G_{n}v_{n}v_{n}^{T} + \dots + \sigma_{n}v_{n}v_{n}^{T} + O + \dots + O \end{pmatrix}$$

$$NB : A = U\Sigma^{T}V^{T} \text{ contrains full orthogonal diagonalizations}$$
of ATA and of AAT:

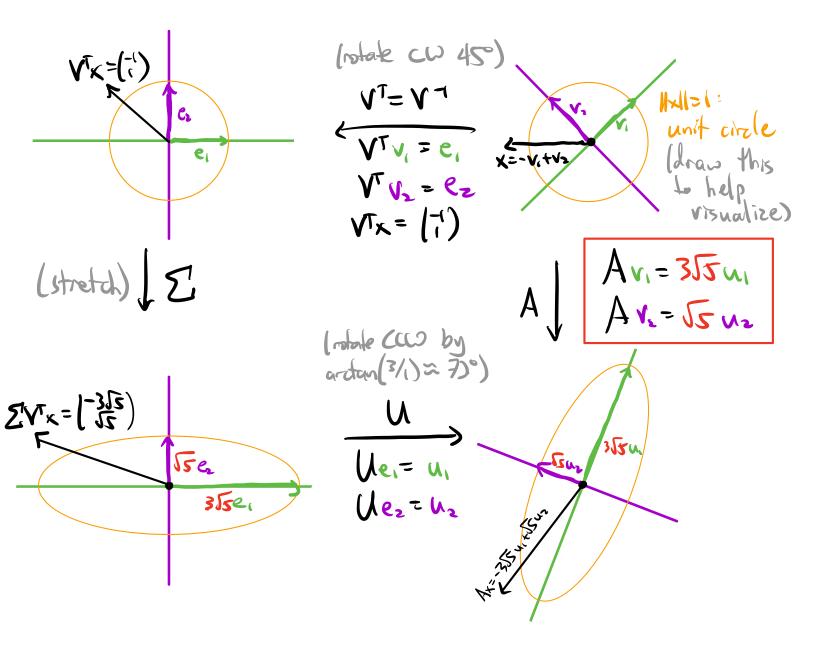
$$ATA = V\begin{pmatrix} 6^{T}, 120\\ 0 & 0 \end{pmatrix} V^{T} \quad AA^{T} = U\begin{pmatrix} 6^{T}, 120\\ 0 & 0 \end{pmatrix} U^{T}$$
If also contains orthonormal bases for all four subspaces:

$$\int_{0}^{0} \int_{0}^{1} \int_{0}^{$$



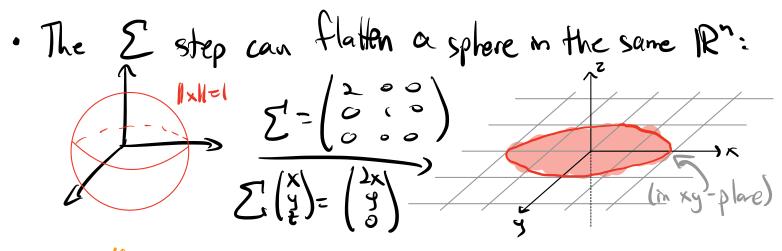


 $5VD: A = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} = U\Sigma V^T$ for $\mathcal{U} = \frac{1}{\sqrt{3}} \begin{pmatrix} u & u \\ 1 & \frac{1}{\sqrt{3}} \end{pmatrix} \quad \mathcal{V} = \frac{1}{\sqrt{3}} \begin{pmatrix} u & v \\ 1 & \frac{1}{\sqrt{3}} \end{pmatrix} \quad \mathcal{Z} = \begin{pmatrix} u & v \\ \frac{3\sqrt{3}}{\sqrt{3}} \end{pmatrix}$ To evaluate $Ax = U\Sigma V^T x^2$ (1) multiply by VT (2) multiply by Zi (3) multiply by U But U and VT are orthogonal, so these just rotate Alip. Ax= (1) rotate/ Plip (2) stretch (3) rotate/ Plip

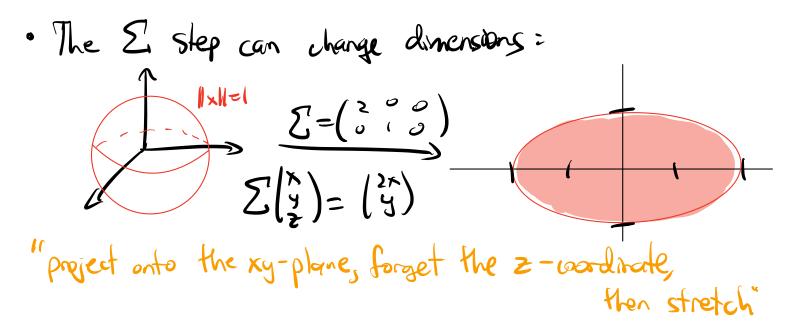


Notes / careats:

- Diagonalization: start & end in Swi, we? basis
 SVD: start with Svi, ue? & end with Eugue? basis
 Different bases!
- The VT& U steps preserve lengths & angles (rotations / Flips) ~> easier to visualize.



"project onto the xy-plane, then stretch"



Geometry of the SVD: Outer Product Form
Here is a geometric interpretation of the SVD that
will be useful for the PCA. Let

$$A = (d_{1} \cdots d_{n}) \quad SVD \quad A = \sigma_{i} u_{i} v_{i} + \cdots + \sigma_{i} u_{i} v_{i} T$$

$$\implies A v_{i} = \sigma_{i} u_{i} \quad A^{T} u_{i} = \sigma_{i} v_{i}$$

$$Expand \quad out \quad A^{T} u_{i} = \sigma_{i} v_{i}$$

$$Expand \quad out \quad A^{T} u_{i} = \sigma_{i} v_{i}$$

$$= (d_{i} \cdots d_{n} - u_{i}) u_{i} = (d_{i} \cdots d_{n} \cdot u_{i})$$

$$\implies \sigma_{i} u_{i} v_{i} = u_{i} (\sigma_{i} v_{i}) T = u_{i} (d_{i} \cdot u_{i} \cdots d_{n} \cdot u_{i})$$

$$= (u_{i} \cdot u_{i}) u_{i} = orthogond \quad projection \quad of \quad d$$

$$anto \quad Span \quad Suis \quad (since \quad u_{i} \cdot u_{i} = \|u_{i}\|^{2} = 1).$$
The columns of $\sigma_{i} u_{i} v_{i}^{T}$ are the

$$arthogond \quad projections$$

$$of the columns \quad of \quad A \quad onto \quad Span \quad Suis.$$
Now look at the sum:

$$A = \sigma_{i} u_{i} v_{i}^{\dagger} + \dots + \sigma_{i} u_{i} v_{r}^{T}$$

The it column at this sum is:

$$\frac{1}{0+A} = di = (d:u)u_1 + \dots + (d:u_n)u_n$$
Since $5u_{0-3}u_n^3$ is an action point basis of Col(A),
this is just the projection formula as applied to
 di : the projection of di onto Col(A) is just di
since $die(O((A))$ (it is the it column of A).
Eq. $A = (\frac{3}{2} - \frac{4}{6} \frac{7}{8} - \frac{1}{1} - \frac{4}{7}) r=2$
 $A = au_iv_i^T + au_2v_3^T$
 $a \approx 16.9$ $a_2 \approx 3.92$
 $u_i^{(a)}(\frac{0.561}{0.828})$ $u_3 \approx (\frac{0.828}{-0.561})$
 $= di = (\frac{3}{7}), (\frac{-4}{7}), \dots$ (durne)
 $= columns of au_2v_1^T$
 $= projections of o onto $= 5pen 5u_3^T$
 $NB^2 = 0 + 1$
So SVD "pulls apart" the columns of A in $u_{v-1}u_{r-1}$$

components