
 

Principal Component Analysis PCA

This is SVD 00 in stats language

it's often how SVD or linear algebra is used

in statistics data analysis
it makes precise statements about fitting data to
lines planes etc and how good the fit is

Idea If you have n samples of m values each
columns of an man data matrix

Let's introduce some terminology from statistics

One Value m 1

Let's record everyone's scores on Midterm
samples Xn

Mean average µ x t a

Variance s x m xn µ
Standard Deviation starance
This tells you how spaced out the samples are

168 of samples are within Is of the mean 2if normallyWheredo these formulas come from distributed

Take a stats class



Eg Actual midterm 2 scores from Fall 20

µ 78

5 14

568 ofscores

Two Values m 2
are in this range

Let's record everyone's scores on problems 1 2
on Midterm

samples
score on problem 1

Yi score on problem 2

Mean scores
Problem 1 Mi x t xn

Problem 2 Ma Ily yn

Recenter to compute variance
Xi Xi Mi Gi Yi Ma subtract means

Variance
Problem 1 si x ̅ X2

Problem 2 set yT yet

Total Variance 52 5 5



NB These are juststatistics for Problem 1 xi and
Problem 2 ly individually so far we've ignored the
fact they might be related This is what PCA does

Eg scores E i E E 1 58
recenter Ei 15 18 8 i

16 8
y

12
subtract recentered

8 Yang means
4

SX
0 4 8 12

8 5 0 3 7 11

Store in matrices

A

A 1

NB Recentered means x ̅ O yit tyn

The sum of the columns of the
recentered data matrix A is zero



Covariance Matrix

S AAT I
row 1 low1 Crawl Crowas

new2 row 1 row2 row2

tie txt att Inga
t Inga yet tyn

The diagonal entries are the variances

The trace is the total variance

The off diagonal entries are called covariances

Eg the 11,2 entry is

new 1 Crow 2 Igt Inga
If this is positive then I yi generally have
the same sign if you did above average on P1
then you likely did aboveaverage on P2 too
vice versa The values are correlated

If this is negative then I yI generally have

opposite signs if you did above average on P1
then you likely did below average on P2
vice versa The values are anti correlated

If this is almost zero then the values are
not correlated



In our case

S f AAT
1,2 covariance 25 0 people who did above
average on PL likely did above average on P2

Covariance Matrix
columns sum to zero

A men recentered data matrix

5 AAT covariance matrix

ii entry s is the variance of the ith measurement

i j entry is the covariance of the ith 5ᵗʰ
measurements

Tr S sit si total variance

5 1 A A
T
so this looks like we can



Apply the SVD Eigenvalues eigenvectors of

S AAT A LEAST
compute the SVD of A

A quirt aunt

of or 20 are the nonzero eigenvalues of S
Us our orthonormal eigenvectors of 5

left singular vectors of A of A
S A I A T

not LEAST A
v Atu
right singular vectors of A of A

NB the SVD of A is

A Flaunt haunt

the singular values of A are Fig For

Fact The trace of a square matrix is the sum of its eigenvals

total variance TMS oft or

What do the singular values singular vectors

tell us about our data They givethe
directions

and amounts of largest smallest variance



columns sum to 0

Def Let A be a recentéred data matrix

A where I recentereddata point

Let S AAT be the covariance matrix
Let meRm be a unit vector
The variance in the u direction is

s a UTS u

NB s u at AAT U UTA Atu AUST Atu

Atu Atu NATull

since ATu III u III we get

slu atSu latin t din

NB dit in 0 for a recentered data matrixA
Hence 0 0 u dit di u a din

so it makes sense to compute the variance of
these numbers din di n with mean zero

slur latin t din



Eg If u b e then Tiu II 8 x ̅ so

slu sle.SE Lxi4 xi s

This is just the variance of the is

In general slei S

Picture Recall that if a is a unit vector then

Iv a u projection of n onto Spank
v.us v.u Nall2 l1 vuSull2 length of the

projection of n onto Spank

newI at15
Catula

Spanfu

length
2 1

2

spanges

Eg With our data before take u in the picture

8 di ft
4 din u

so slap sum of squares of
distances from the
to zero8 5 0 3 7 11



Now we apply quadratic optimization to slu uTSu

The largest eigenvalue of S AAT is a and
u is a unit of eigenvector

Quadratic Optimization

U maximizes s u utSu subject to Hull 1
with maximum value or

Therefore

vector u is the direction of greatest variance
a sine variance in the u direction

Our data points are stretched out most in the a direction

In our example 8 Panas

4
A Quiet quant for

I92 56.9 of 3.07

we 858 use
s s o s

di projection of onto Spansu

So the variance is maximized in the U direction and the
variance in that direction is a 56.9

NB this is greater than the Problem 1 variance 20

the Problem 2 variance 40



NB Here's how I should butwon't grade the final exam

Put the scores of each problem in an mxn matrixAo

m problems n students

Subtract row problem averages Mi __ Mm to recenter

matrix A di di
Compute the 1ˢᵗ principal component UI
The score for student i is

di'll add back the means

This maximizes the standard deviation by reweighting
the problems according to U

We knew that u is the direction of largest variance
What about us ur



QO with Extra Constraints

slut uTSu is maximized

subjectto Hall 1
at u with slui a

u is the directionwith largest variance

s a is maximized

subjectto Hall l and at u
at us with slur of

Us is the directionwith 2ⁿᵈ largest variance
s a is maximized

subjectto Hall and at us at Mit

at Ui with slui o

ur is the directionwith ith largest variance

NB if A has full row rank r m then

slut uTSu is minimized

subjectto Hall 1
at ur with slur a

un is the directionwith smallest variance

If A doesnothave full row rank then slu O

for any ue Nal At So



Principal Components

The columns of Flquirit are the orthogonal
projections of the columns of A onto SpanSui

A Equiv.tt Fart
breaks apart your data points into principal
components

Def Let A be a recentered datamatrix with SVD

A Equiv.tt Forunut

The ith principal component of A is F iQU.VE

The columns of the ith principal component of A
are the orthogonal projections of the columns of A
onto Span ui direction of it largest variance

The variance of the lengths of the ith principal
component of A is oi ith largest variance



Eg In our example If A quit quavat

92 56.9 05 3.07 5 20

his 85 use
5 1 sito

Total variance 92 64 56.9 3.1 60 20 40

di g
Dana

4columns of 550,4Vit
projections of onto not fiftea

columns of 55042kt fiEIe
projections of onto 8 8 5 0 3 7 11

NB In this case slut is minimized at us with
minimum value of smallest eigenvalue of S
stud dine dn.ua

sum of squares of lengths of

Conclusion The direction of largest variance is the
lineof best fit in the sense of orthogonal least

squares and the

error sum of squares of lengths of
Int slua In 11022


