Math 218D-1: Homework #1

Answer Key

1. Consider the vectors

$$
u = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad v = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} \quad w = \begin{pmatrix} 8 \\ -6 \\ -2 \end{pmatrix}.
$$

- **a**) Compute $u + v + w$ and $u + 2v w$.
- **b**) Find numbers *x* and *y* such that $w = xu + yv$.
- **c)** Explain why every linear combination of *u*, *v*, *w* is also a linear combination of *u* and *v* only.
- **d)** The sum of the coordinates of any linear combination of *u*, *v*, *w* is equal to $\overline{}$?
- **e**) Find a vector in \mathbb{R}^3 that is *not* a linear combination of u, v, w .

Solution.

$$
\textbf{a) } u + v + w = \begin{pmatrix} 6 \\ -7 \\ 1 \end{pmatrix} \qquad u + 2v - w = \begin{pmatrix} -13 \\ 6 \\ 7 \end{pmatrix}
$$

- **b**) $w = 2u 2v$
- **c)** Substitute $w = 2u 2v$ in a linear combination.
- **d)** Zero.
- **e)** Anything whose coordinates do not sum to zero.
- **2.** Find two *different* triples (*x*, *y*, *z*) such that

$$
x\begin{pmatrix}1\\2\end{pmatrix}+y\begin{pmatrix}1\\-2\end{pmatrix}+z\begin{pmatrix}2\\1\end{pmatrix}=\begin{pmatrix}4\\0\end{pmatrix}.
$$

How many such triples are there?

Solution.

Choose any value of *z*, and set

.

$$
x = 2 - \frac{5}{4}z
$$

$$
y = 2 - \frac{3}{4}z.
$$

- **3.** Decide if each statement is true or false, and explain why.
	- **a**) The vector $\frac{1}{2}v$ is a linear combination of *v* and *w*.

$$
\mathbf{b) }\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

c) If *v*, *w* are two vectors in \mathbb{R}^2 , then any other vector *b* in \mathbb{R}^2 is a linear combination of *v* and *w*.

Solution.

a) True.

- **b)** False.
- **c)** False (suppose *v* and *w* are parallel).
- **4.** Suppose that *v* and *w* are *unit vectors*: that is, $v \cdot v = 1$ and $w \cdot w = 1$. Compute the following dot products using the algebra of dot products (your answers will be actual numbers):

a) $v \cdot (-v)$ **b**) $(v+w) \cdot (v-w)$ **c**) $(v+2w) \cdot (v-2w)$.

Solution.

$$
a) \ \nu \cdot (-\nu) = -(\nu \cdot \nu) = -1
$$

- **b**) $(v + w) \cdot (v w) = v \cdot v w \cdot w = 0$
- **c**) $(v + 2w) \cdot (v 2w) = v \cdot v 2^2w \cdot w = -3$
- **5.** Two vectors *v* and *w* are *orthogonal* if $v \cdot w = 0$. Find nonzero vectors *v* and *w* in \mathbb{R}^3 that are orthogonal to $(1,1,1)$ and to each other.

Solution.

There are many answers. For instance, $v = (1, -1, 0)$ and $w = (1, 1, -2)$.

6. Compute the following matrix-vector products using *both* the by-row and by-column methods. If the product is not defined, explain why.

$$
\begin{pmatrix} 2 \ 5 \end{pmatrix} \begin{pmatrix} 1 \ -3 \ -1 \end{pmatrix} \quad \begin{pmatrix} 1 & -2 \ 0 & -1 \ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ -2 \end{pmatrix} \quad \begin{pmatrix} 7 & 2 & 4 \ 3 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 \ -1 \ -1 \end{pmatrix}
$$

$$
\begin{pmatrix} 7 & 4 \ -2 & 2 \ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 \ -2 \end{pmatrix} \quad (2 \ 6 \ -1) \begin{pmatrix} 5 \ -1 \ 0 \end{pmatrix} \quad \begin{pmatrix} 5 \ -1 \ 0 \end{pmatrix} \begin{pmatrix} 2 & 6 & -1 \end{pmatrix}
$$

Solution.

$$
\begin{bmatrix}\n\text{undefined} \\
\text{undefined}\n\end{bmatrix}\n\quad\n\begin{bmatrix}\n\text{undefined} \\
\text{p}\n\end{bmatrix}\n\quad\n\begin{bmatrix}\n9 \\
7\n\end{bmatrix}\n\quad\n\begin{bmatrix}\n-1 \\
-6 \\
2\n\end{bmatrix}\n\quad\n\begin{bmatrix}\n4\n\end{bmatrix}\n\quad\n\begin{bmatrix}\n10 & 30 & -5 \\
-2 & -6 & 1 \\
0 & 0 & 0\n\end{bmatrix}
$$

7. Suppose that $u = (x, y, z)$ and $v = (a, b, c)$ are vectors satisfying $2u + 3v = 0$. Find a nonzero vector w in \mathbb{R}^2 such that

$$
\begin{pmatrix} x & a \\ y & b \\ z & c \end{pmatrix} w = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
$$

Solution.

$$
w = \begin{pmatrix} 2 \\ 3 \end{pmatrix}
$$

8. Consider the matrices

$$
A = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -4 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 3 & 2 \\ 1 & -1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}
$$

$$
D = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \qquad E = \begin{pmatrix} -3 & 5 \end{pmatrix}.
$$

Compute the following expressions. If the result is not defined, explain why.

a)
$$
-3A
$$
 b) $B-3A$ **c)** AC **d)** B^2
e) $A+2B$ **f)** $C-E$ **g)** EB **h)** D^2

Solution.

- **a**) $\begin{pmatrix} -6 & -3 & 3 \\ 13 & 13 & 6 \end{pmatrix}$ -12 12 -6 λ **b**) $\begin{pmatrix} -1 & 0 & 5 \\ 11 & 11 & 4 \end{pmatrix}$ −11 11 −4 λ **c)** [undefined] **d)** [undefined] **e**) $\begin{pmatrix} 12 & 7 & 3 \\ 6 & -6 & 6 \end{pmatrix}$ **f)** [undefined] **g**) $(-10 -14 4)$ **h**) $\begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix}$
- **9.** Compute the product

$$
\begin{pmatrix}\n1 & 2 \\
2 & -1\n\end{pmatrix}\n\begin{pmatrix}\n2 & 1 & -1 \\
4 & -1 & 2\n\end{pmatrix}
$$

in two ways:

- **a)** using the column form, and
- **b)** using the outer product form.

Solution.

Both give the same answer:

$$
\begin{pmatrix} 1 & 2 \ 2 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \ 4 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 10 & -1 & 3 \ 0 & 3 & -4 \end{pmatrix}.
$$

10. Consider the matrices

$$
A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & h \end{pmatrix}.
$$

What value(s) of *h*, if any, will make $AB = BA$?

Solution.

 $h = 1$

11. Consider the matrices

$$
A = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} -4 & -8 \\ 5 & 8 \end{pmatrix} \qquad C = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}.
$$

Verify that $AC = BC$ and yet $A \neq B$.

Solution.

$$
AC = \begin{pmatrix} -4 & -4 \\ 3 & 3 \end{pmatrix} = BC
$$

12. Show that $(A + B)^2 \neq A^2 + 2AB + B^2$ when

$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.
$$

What is the correct formula?

$$
(A + B)^2 = A^2 + B^2 + \underline{\qquad}
$$

[Hint: distribute the product $(A + B)(A + B)$.]

Solution.

In this example,

$$
(A+B)^2 = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad A^2 + 2AB + B^2 = \begin{pmatrix} 6 & 1 \\ 1 & 0 \end{pmatrix}.
$$

The correct formula is

$$
(A + B)^2 = A^2 + AB + BA + B^2.
$$

- **13.** In the following, find the 2×2 matrix *A* that acts in the specified manner. **a**) $A\begin{pmatrix} x \\ y \end{pmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $\mathbf{y}_{\mathbf{y}}^{\mathbf{x}}$): the identity matrix does not change the vector.
	- **b**) $A\begin{pmatrix} x \\ y \end{pmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$ $\chi(x)$: this is a flip over the line $y = x$.
	- **c**) $A \begin{pmatrix} x \\ y \end{pmatrix}$ $\begin{aligned} \mathbf{y}^{\mathbf{x}} \\ \mathbf{y} \end{aligned}$ = $\begin{pmatrix} \mathbf{y} \\ -\mathbf{x} \end{pmatrix}$: this rotates vectors clockwise by 90°.
- **d**) $A \begin{pmatrix} x \\ y \end{pmatrix}$ $y^{(x)} = -\binom{x}{y}$ *x*^y): this rotates vectors by 180°.
- **e**) $A \begin{pmatrix} x \\ y \end{pmatrix}$ $\binom{x}{y} = \binom{0}{y}$ *y* : this projects onto the *y*-axis.
- **f)** $A\begin{pmatrix} x \\ y \end{pmatrix}$ $\binom{x}{y} = \binom{x}{0}$ $\binom{x}{0}$: this projects onto the *x*-axis.
- **g**) $A \begin{pmatrix} x \\ y \end{pmatrix}$ $\begin{aligned} \n\chi_y^{\mathbf{x}} \n\end{aligned}$ = $\begin{pmatrix} x \\ y - 2x \end{pmatrix}$: this performs the row operation R_2 −= 2 R_1 . [Hint: compute $A^{(1)}_0$ $\binom{1}{0}$ and $A\binom{0}{1}$ $_{1}^{0}).$]

Solution.

a)
$$
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$
 b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ d) $-\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
e) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ f) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ g) $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$

14. Consider the matrices

$$
A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}.
$$

Compute *AD* and *DA*. Explain how the columns or rows of *A* change when *A* is multiplied by the diagonal matrix *D* on the right or the left.

Solution.

We have

$$
AD = \begin{pmatrix} 2 & 3 & 5 \\ 2 & 6 & 15 \\ 2 & 12 & 25 \end{pmatrix} \qquad DA = \begin{pmatrix} 2 & 2 & 2 \\ 3 & 6 & 9 \\ 5 & 20 & 25 \end{pmatrix}.
$$

Multiplying on the right by *D* scales the *columns* of *A* by the diagonal entries of *D*; multiplying on the left by *D* scales the *rows*.

15. Let *A* be a 4 × 3 matrix satisfying

$$
Ae_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 7 \end{pmatrix} \qquad Ae_2 = \begin{pmatrix} 4 \\ 4 \\ -1 \\ -1 \end{pmatrix} \qquad Ae_3 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 1 \end{pmatrix}.
$$

What is *A*?

Solution.

We know that *Aeⁱ* is the *i*th column of *A*, so

$$
A = \begin{pmatrix} 1 & 4 & 0 \\ 3 & 4 & 0 \\ 2 & -1 & -2 \\ 7 & -1 & 1 \end{pmatrix}.
$$

16. Suppose that *A* is a 4×3 matrix such that

$$
A\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 2 \\ 9 \end{pmatrix} \qquad A\begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ 2 \\ 3 \end{pmatrix}.
$$

Compute Ax , where *x* is the vector $(3, -2, -2)$.

[**Hint:** express (3,−2,−2) as a linear combination of (1, 0, 2) and (0, 1, 4).]

Solution.

We have

$$
x = \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix},
$$

so by distributivity,

$$
Ax = A\left(3\begin{pmatrix}1\\0\\2\end{pmatrix} - 2\begin{pmatrix}0\\1\\4\end{pmatrix}\right) = 3A\begin{pmatrix}1\\0\\2\end{pmatrix} - 2A\begin{pmatrix}0\\1\\4\end{pmatrix} = 3\begin{pmatrix}7\\1\\2\\9\end{pmatrix} - 2\begin{pmatrix}1\\-4\\2\\3\end{pmatrix} = \begin{pmatrix}19\\11\\2\\21\end{pmatrix}.
$$

17. For the following matrices *A* and *B*, compute $AB, A^T, B^T, B^T A^T$, and $(AB)^T$. Which of these matrices are equal and why? Why can't you compute A^TB^T ?

$$
A = \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -1 & 2 \end{pmatrix}.
$$

Solution.

$$
AB = \begin{pmatrix} 10 & -1 & 3 \\ -8 & -1 & 0 \end{pmatrix} \qquad A^{T} = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}
$$

\n
$$
B^{T} = \begin{pmatrix} 2 & 4 \\ 1 & -1 \\ -1 & 2 \end{pmatrix} \qquad B^{T}A^{T} = \begin{pmatrix} 10 & -8 \\ -1 & -1 \\ 3 & 0 \end{pmatrix} \qquad (AB)^{T} = \begin{pmatrix} 10 & -8 \\ -1 & -1 \\ 3 & 0 \end{pmatrix}
$$

The equality $(AB)^T = B^T A^T$ always holds, and we can't compute $A^T B^T$ because we can't multiply a 2×2 matrix by a 3×2 matrix.

- **18.** Recall that a matrix *A* is *symmetric* if $A^T = A$. Decide if each statement is true or false, and explain why.
	- **a)** If *A* and *B* are symmetric of the same size, then *AB* is symmetric.
	- **b**) If *A* is symmetric, then A^3 is symmetric.
	- **c**) If *A* is any matrix, then A^TA is symmetric.

Solution.

a) False.

b) True.

c) True.

19. Consider the following system of equations:

$$
x_1 - 2x_2 + x_3 = 1
$$

\n
$$
-2x_1 + 5x_2 + 5x_3 = 2
$$

\n
$$
3x_1 - 7x_2 - 7x_3 = 2.
$$

- **a**) Use row operations to eliminate x_1 from all but the first equation.
- **b)** Use row operations to modify the system so that x_2 only appears in the first and second equations (and x_1 still only appears in the first).
- **c**) Solve for x_3 , then for x_2 , then for x_1 . What is the solution?

Solution.

a) We do R_2 += $2R_1$ and R_3 −= $3R_1$ to obtain

$$
x_1 - 2x_2 + x_3 = 1
$$

$$
x_2 + 7x_3 = 4
$$

$$
-x_2 - 10x_3 = -1
$$

b) We do R_3 += R_2 to obtain

$$
x_1 - 2x_2 + x_3 = 1
$$

\n
$$
x_2 + 7x_3 = 4
$$

\n
$$
-3x_3 = 3
$$

\n**c)** $x_3 = -1$ $x_2 = 11$ $x_1 = 24$

20. In the table below, a linear system is expressed as a system of equations, as a matrix equation, or as an augmented matrix. Fill in the blank entries of the table.

Solution.

System of Equations Matrix Equation Matrix Equation Augmented Matrix $3x_1 + 2x_2 + 4x_3 = 9$ $-x_1^2$ + 4 x_3^3 = 2 $\begin{pmatrix} 3 & 2 & 4 \\ -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ *x*2 *x*3 ! = 9 2 $\begin{bmatrix} 3 & 2 & 4 & 9 \end{bmatrix}$ -1 0 4 2 λ $3x_1 - 5x_2 = 1$ $2x_1 + 4x_2 = 1$ $-x_1^2 + x_2^2 = 2$ $\begin{pmatrix} 3 & -5 \\ 1 & 2 & -5 \end{pmatrix}$ 2 4 $\begin{pmatrix} 3 & -5 \\ 2 & 4 \\ -1 & 1 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ *x*2 λ = $\sqrt{1}$ 1 2 $\begin{array}{ccc} \begin{array}{ccc} \end{array} & \begin{array}{ccc} 3 & -5 & 1 \end{array} \end{array}$ 2 4 | 1 -1 1 2 ! x_1 + x_3 + x_4 = 2 $3x_2 - x_3 - 2x_4 = 4$ $x_1 - 3x_2 - 4x_3 - 3x_4 = 2$ $6x_1 + 5x_2 - x_3 - 8x_4 = 1$ $\sqrt{ }$ \mathbf{I} 1 0 1 1 $0 \t 3 \t -1 \t -2$ $1 -3 -4 -3$ $6 \t 5 \t -1 \t -8$ λ $\overline{}$ $\sqrt{ }$ \mathbf{I} *x*1 *x*2 *x*3 *x*4 λ $\Big\} =$ $\sqrt{ }$ \mathbf{I} 2 4 2 1 λ $\overline{}$ $\sqrt{ }$ \mathbf{I} $1 \t0 \t1 \t1 \t2$ 0 3 -1 -2 4 $1 -3 -4 -3 2$ 6 $5 -1 -8 1$ λ $\overline{}$

21. Which of the following matrices are not in row echelon form? Why not?

$$
\begin{pmatrix}\n1 & 3 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 4\n\end{pmatrix}\n\begin{pmatrix}\n3 & 0 & 1 & 0 \\
1 & 0 & 2 & 3 \\
0 & 0 & 0 & 4\n\end{pmatrix}\n\begin{pmatrix}\n2 & 3 & 4 & 1 \\
0 & 9 & 3 & 1 \\
0 & 0 & 0 & 1\n\end{pmatrix}\n\begin{pmatrix}\n2 & 3 & 4 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
(1 \ 0 \ 2 \ 4)\n\begin{pmatrix}\n1 \\
0 \\
2 \\
4\n\end{pmatrix}\n\begin{pmatrix}\n1 \\
0 \\
2 \\
4\n\end{pmatrix}\n\begin{pmatrix}\n0 \\
1 \\
0 \\
0\n\end{pmatrix}\n\begin{pmatrix}\n2 & 1 \\
0 & 2 \\
0 & 4 \\
0 & 0\n\end{pmatrix}
$$

Solution.

These are not in REF:

22. Find values of *a* and *b* such that the following system has **a)** zero, **b)** exactly one, and **c)** infinitely many solutions.

$$
2x + ay = 4
$$

$$
x - y = b
$$

Solution.

- **a**) $a = -2$ and *b* any value except 2.
- **b**) $a \neq -2$ and any value for *b*.
- **c**) $(a, b) = (-2, 2)$.
- **23.** Give examples of matrices *A* in *row echelon form* for which the number of solutions of $Ax = b$ is:
	- **a)** 0 or 1, depending on *b*
- **b**) ∞ for every *b*
- **c**) 0 or ∞ , depending on *b*
- **d)** 1 for every *b*.

Is there a square matrix satisfying **b)**? Why or why not?

Solution.

a)
$$
\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}
$$

b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
c) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

There is no square matrix satisfying **b)**.