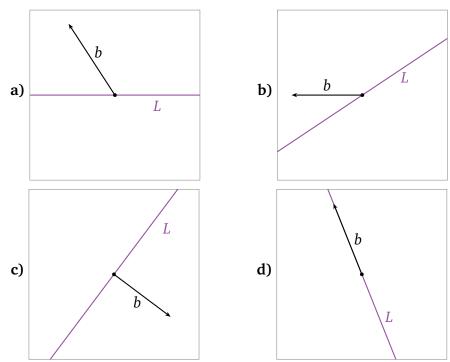
Math 218D-1: Homework #6

due Wednesday, October 9, at 11:59pm



1. In each case, *draw* the orthogonal projection b_V of *b* onto *L* without doing any computations.

2. For each subspace *V* and vector *b*, compute the orthogonal projection b_V of *b* onto *V* by solving a normal equation $A^T A x = A^T b$, and find the distance from *b* to *V*.

a)

$$V = \operatorname{Col}\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$
b)

$$V = \operatorname{Col}\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 2 & 2 & -1 \\ 4 & 3 & 0 \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ 7 \end{pmatrix}$$
c)

$$V = \operatorname{Col}\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \qquad b = \begin{pmatrix} -6 \\ -24 \\ -3 \end{pmatrix}$$

3. For each subspace *V*, compute the orthogonal decomposition $b = b_V + b_{V^{\perp}}$ of the vector b = (1, 2, -1) with respect to *V*. Use the formula for projection onto a line in **c**).

a)
$$V = \text{Span} \left\{ \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix} \right\}$$

b) $V = \text{Nul} \begin{pmatrix} 1 & 2 & 2\\0 & 2 & 0 \end{pmatrix}$
c) $V = \text{Span} \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$
d) $V = \mathbb{R}^3$
e) $V = \{0\}$

[Hint: Only part a) requires elimination.]

4. Compute the orthogonal decomposition $(3, 1, 3) = b_V + b_{V^{\perp}}$ with respect to each subspace of *V* of HW5#18(a)–(e).

[**Hint:** Only parts **a**) and **c**) require any work, and even **c**) doesn't require work if you're clever enough. In fact, you can solve all five parts by computing two dot products.]

5. a) Let $v, w \in \mathbb{R}^n$. Show that

$$||v + w||^2 = ||v||^2 + ||w||^2$$

if $v \perp w$.

b) Let *V* be a subspace of \mathbb{R}^n , let $b \in \mathbb{R}^n$, and let $v \in V$. Use **a**) and the fact that $b - b_V \in V^{\perp}$ to show that

$$||b - v||^2 = ||b - b_V||^2 + ||b_V - v||^2.$$

Use this to prove that b_V really is the closest vector in V to b.

- c) Let V be a subspace of \mathbb{R}^n and let $b \in \mathbb{R}^n$. Use a) to show that $||b_V|| \le ||b||$, with equality if and only if $b \in V$.
- **6. a)** Find an implicit equation for the plane

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 7\\8\\9 \end{pmatrix} \right\}.$$

[**Hint:** use HW5#18(a).]

- **b)** Find implicit equations for the line $\{(t, -t, t): t \in \mathbb{R}\}$. [Hint: use HW5#19(g).]
- **7.** Show that $A^T A = 0$ is only possible when A = 0.

- **8.** Let *Q* be an $n \times n$ (square) matrix such that $Q^T Q = I_n$ (so $Q^T = Q^{-1}$).
 - a) Show that the columns of *Q* are unit vectors.
 - **b)** Show that the columns of *Q* are orthogonal to each other.
 - c) Show that the *rows* of *Q* are also orthogonal unit vectors.
 - **d)** Find all 2×2 matrices Q such that $Q^T Q = I_2$.

Such a matrix Q is called *orthogonal*.¹

- **9.** Construct a 3×3 matrix *A*, with no zero entries, whose columns are orthogonal to each other. Compute $A^T A$, and explain why this matrix is diagonal.
- **10.** Explain why *A* has full column rank if and only if $A^T A$ is invertible.
- **11.** Decide if each statement is true or false, and explain why.
 - a) Two subspaces that meet only at the zero vector are orthogonal complements.
 - **b)** If *A* is a 3×4 matrix, then $Col(A)^{\perp}$ is a subspace of \mathbb{R}^4 .
 - **c)** If *A* is any matrix, then $Nul(A) = Nul(A^TA)$.
 - **d)** If *A* is any matrix, then $Row(A) = Row(A^T A)$.
 - e) If every vector in a subspace V is orthogonal to every vector in another subspace W, then $V = W^{\perp}$.
 - **f)** If $x \in V$ and $x \in V^{\perp}$, then x = 0.
 - **g)** If *x* is in a subspace *V*, then the orthogonal projection of *x* onto *V* is *x*.
 - **h)** If *x* is in the orthogonal complement of a subspace *V*, then the orthogonal projection of *x* onto *V* is *x*.
- **12.** For each column space *V*, compute the projection matrix P_V . Verify that $P_V^2 = P_V$ and that $P_V^T = P_V$.

a)
$$V = \operatorname{Col}\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 b) $V = \operatorname{Col}\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \\ 2 & 2 & -1 \\ 4 & 3 & 0 \end{pmatrix}$ **c)** $V = \operatorname{Col}\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix}$

13. For each subspace *V*, compute the projection matrix P_V . Verify that $P_V^2 = P_V$ and that $P_V^T = P_V$.

a)
$$V = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \right\}$$
 b) $V = \operatorname{Nul} \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 0 \end{pmatrix}$

¹I am not responsible for this terminology.

14. For each vector v, compute the projection matrix onto $V = \text{Span}\{v\}$ using the formula $P_V = vv^T/v \cdot v$.

a)
$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 b) $v = \begin{pmatrix} 3 \\ 0 \\ 4 \\ -1 \end{pmatrix}$ **c**) $v = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$ (in \mathbb{R}^n)

- **15.** Compute P_V and $P_{V^{\perp}}$ when V is the column space of an invertible $n \times n$ matrix.
- **16.** For each subspace V, compute the projection matrix P_V .
 - a) $\{(x, y, x): x, y \in \mathbf{R}\}.$
 - **b)** $\{(x, y, z) \in \mathbf{R}^3 : x = 2y + z\}.$

c) The solution set of the system of equations $\begin{cases} x + y + z = 0 \\ x - 2y - z = 0. \end{cases}$

d)
$$\{x \in \mathbf{R}^3 : Ax = 2x\}$$
, where $A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$

- e) The subspace of all vectors in \mathbf{R}^3 whose coordinates sum to zero.
- **f)** The intersection of the plane x 2y z = 0 with the *xy*-plane.
- **g)** The line $\{(t, -t, t): t \in \mathbf{R}\}$.

[**Hint:** Compare HW4#21 and HW5#19. You can save a lot of work by sometimes computing $P_{V^{\perp}}$ and using $P_V = I_3 - P_{V^{\perp}}$.]

17. Consider the matrix

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 2 \\ 4 & 3 \end{pmatrix},$$

and let $V = \operatorname{Col}(A)$.

- **a)** Compute P_V using the formula $P_V = A(A^T A)^{-1}A^T$.
- **b)** Compute a basis $\{v_1, v_2\}$ for $V^{\perp} = \text{Nul}(A^T)$.
- **c)** Let *B* be the matrix with columns v_1, v_2 , and compute $P_{V^{\perp}}$ using the formula $B(B^TB)^{-1}B^T$.
- **d)** Verify that your answers to (a) and (c) sum to I_4 .

(Factor out ad - bc and use a computer to do the matrix multiplication! Your answers should be in fractions, not decimals.)

This illustrates the fact that once you've computed P_V , there's no need to compute $P_{V^{\perp}}$ separately. It's a lot of extra work!

- **18.** Compute the matrices P_1 , P_2 for orthogonal projection onto the lines through $a_1 = (-1, 2, 2)$ and $a_2 = (2, 2, -1)$, respectively. Now compute P_1P_2 , and explain why it is what it is.
- **19.** Consider the plane *V* defined by the equation x + 2y z = 0. Compute the matrix P_V for orthogonal projection onto *V* in two ways:
 - **a)** Find a basis for *V*, put your basis vectors into a matrix *A*, and use the formula $P_V = A(A^T A)^{-1} A^T$.
 - **b)** Compute the matrix for orthogonal projection $P_{V^{\perp}}$ onto the line V^{\perp} using the formula $\nu \nu^T / \nu \cdot \nu$, and subtract: $P_V = I_3 P_{V^{\perp}}$. [**Hint:** It doesn't take any work to find a basis for V^{\perp} .]

If V is defined by a single equation in 1 000 000 variables, which method do you think a computer would be able to implement?

- **20.** Decide if each statement is true or false, and explain why. In each statement, *V* is a subspace of \mathbf{R}^{n} .
 - **a)** The rank of P_V is equal to dim(V).
 - **b)** $P_V P_{V^{\perp}} = 0.$
 - **c)** $P_V + P_{V^{\perp}} = 0.$
 - **d)** $\operatorname{Col}(P_V) = V.$
 - e) Nul $(P_V) = V$.
 - **f)** Row $(P_V) = \text{Col}(P_V)$.
 - **g)** Nul $(P_V)^{\perp} = \operatorname{Col}(P_V)$.