The Big Picture

Last time we discussed orthogonality of the it subspaces. Here is a summary:

NB: The dimensions match up with dim Vtdam $V^{\perp} = n^{-1}$ dom Nul(A)+ dim Row(A) = n dim Nul(AT)+dim Col(A) = m

Recall: If A has columns
$$v_{1,\dots,v_{N}}v_{N}$$
 then
 $ATA = \begin{pmatrix} -v_{1}T \\ -v_{1}T \end{pmatrix} \begin{pmatrix} v_{1} \dots v_{N} \end{pmatrix} = \begin{pmatrix} v_{1}v_{1} & v_{2}v_{1} & v_{2}v_{2} & v_{2}v_{1} \\ v_{2}v_{1} & v_{2}v_{2} & v_{2}v_{2} & v_{2}v_{2} \end{pmatrix}$
This is the matrix of column old products:
the (v_{1}) -entry is $(c_{1}i)\cdot(c_{2}i)$
With orthogonality of the 4 subspaces, we an prove:
Important Fact that we will use many times:
 $Nul(ATA) = Nul(A)$
Proof: Nul(ATA) contains $Nul(A) = (HUS)$
 $x \in Nul(A) \implies Ax = 0 \implies ATAx = 0 \implies x \in Nul(ATA)$
 $Nul(ATA) \implies ATAx = 0 \implies Ax \in Nul(AT)$
 $\implies Ax \in Col(A)$ and $Nul(AT)$
 $\implies Ax \in Col(A)$ and $Nul(AT)$

Eg: Find an implicit equation for the plane

$$V = Span S(1), (5)$$

 $V^{\perp} = Nul (1, 1, 0)$
 $= V = Span S(-1, 0)$
 $= V = Span S(-1, 0)$
 $= Span$

Now it's easy to check if a vector is in
$$V^{2}$$

-xitx=0 means $x_{1} = x_{2}$.
 $\begin{pmatrix} 3\\ 7\\ 7 \end{pmatrix} = mV$. $\begin{pmatrix} -3\\ -7\\ 7 \end{pmatrix}$ is not.

Orthogonal Projections Recall to find the best approximate solution of Ax=b, want to find the closest vector b to b in Col(A) = SAx xER? 3 Want: b-b is orthogonal to Col(A): $b-b\in C_{d}(A)^{\perp}=N_{u}(A^{\top})$ Johns Def: Let V be a subspace of Rⁿ and beRⁿ. The orthogonal projection of 6 onto Vis the closest vector by in V to b. It is characterized by b-breV+ The orthogonal decomposition of b relative to V is b = bv + bviP = PA + PAT $b_{v1} = b - b_v \in V^{\perp}$. Note that Here $P - P^{\Lambda T} = P^{\Lambda C} \Lambda = (\Lambda_T)_T$ So that but is projection onto V¹.

In other words, the orthogonal decomposition is b = (closest vector bv) + (closest vector bv)b= (projection of b) + (projection of b) onto V) + (onto VL) [demos] How to compute by?

Step O: Write V as a column space or a null space. V = G(A): then $V^{\perp} = Nul(A^{T})$, so $b-b_{v}\in N_{u}(A^{T}) \implies A^{T}(b-b_{v})=0$ If bre GI(A) then br=Ax for x ER": $A^{T}(b-A^{2}) = 0 \implies A^{T}b - A^{T}A^{2} = 0$ \implies ATAx = ATb Solve this equation for $\hat{\chi} \longrightarrow b_v = A \hat{\chi}$

Eq: Let
$$b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $V = Col \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} A$
Find $bv = the orthogonal projection of b to V .
We set up the equations $A^{T}A\hat{x} = A^{T}b$:
 $A^{T}A = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} C_{productr}^{n}$
 $A^{T}b = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
In augmented matrix form, $A^{T}A\hat{x} = A^{T}b$ is:
 $\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} C_{productr}^{n}$
 $A^{T}b = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
So $\hat{x} = \begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix} \Rightarrow b_{V} = A\hat{x} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix}$
Check: $b_{V1} = b - b_{V} = \begin{pmatrix} v_{2} \\ -v_{2} \end{pmatrix}$
 $\begin{pmatrix} v_{2} \\ -v_{2} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0$
 $\begin{pmatrix} v_{2} \\ -v_{2} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} v_{2} \\ -v_{2} \end{pmatrix}$
Distance from $V = \| b - b_{V} \| = \| b_{V1} \| = \| \begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix} \| = \frac{1}{2}$
Orthogonal Decomposition: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} v_{2} \\ v_{2} \end{pmatrix} + \begin{pmatrix} v_{2} \\ -v_{2} \end{pmatrix}$$

Procedure: To compute the orthogonal projection
by of b onto V=Col(A):
(1) Solve the equation ATA\$\$=ATb
(2) by=A\$\$ for any solution \$\$.
Then by1=b-by, and the orthogonal
decomposition of b relative to V is
b= by+by+.
The distance from b to V is Nby11.
Eq: Let b= (1) and V=Col(
$$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$
).
Find the orthogonal decomposition of b relative
to V.
(1) ATA= $\begin{pmatrix} 1, 2, 1\\ -1, 4, -1 \end{pmatrix}\begin{pmatrix} 1, 2, 1\\ 2, -1, -1 \end{pmatrix} = \begin{pmatrix} 6, 3, 6\\ 6, 6, 18 \end{pmatrix}$
ATb= $\begin{pmatrix} 1, 2, -1\\ -1, 4, -1 \end{pmatrix}\begin{pmatrix} 1\\ 2 \end{pmatrix} = \begin{pmatrix} 1/2\\ -1 \end{pmatrix}$
Solve ATA\$\$=ATb:
 $\begin{pmatrix} 6, 3, 6\\ -1, 4 \end{pmatrix} = \begin{pmatrix} 2/3\\ -1 \end{pmatrix} + X_3 \begin{pmatrix} -1\\ -2\\ 1 \end{pmatrix}$

(2) by= A& for any solution. Lot's use the particular solution: $b_{v} = \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ NB: by=b: what does that mean? b was already in V! More on this later. Def: The normal equation of Ax=b is AA2=AT6 Fact: ATAR=ATE is always consistent! (Otherwise the Procedure wouldn't work.) Why? I claim Col(AT) = Col(ATA). From before: Nul(A) = Nul(ATA) Take $(-)^{\perp}$: $N_{u} | (A)^{\perp} = N_{u} | (A^{T}A)^{\perp}$ $Nul(A)^{+} = Rou(A) = (ol(A^{T}))$ $\operatorname{Nul}(A^{T}A)^{\perp} = \operatorname{Rou}(A^{T}A) = (\operatorname{l}(|A^{T}A|)^{T})$ = G(ATA)Since AT be Col(AT)= Col(ATA), the equation ATAX=ATE is consistent.

Now we know how to project onto a column space. What if V=Nul(A)? Then $V^{\perp}=Nul(A)^{\perp}=Row(A)=Col(A^{\top})$. So first compute by r=projection onto a col space. Then $b_{V}=b-b_{V\perp}$.

Procedure: To compute the orthogonal projection
by of b onto
$$V = Nul(A)$$
:
(1) Compute by $u = projection$ onto $V^{\perp} = GI(A^{\perp})$
(2) by $v = b - by u$

Use the symmetry in the orthogonal decomposition b=brtbri to your advantage!

Eq: Project b=
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 onto V=Nul $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$.
First we project onto Col $\begin{pmatrix} 1 & 0 \end{pmatrix}$: before which and $\begin{pmatrix} 1 & 0 \end{pmatrix}$.
 $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$ foref $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1/2 \end{pmatrix}$
So $\hat{X} = \begin{pmatrix} 0 & 0 \\ 1/2 \end{pmatrix}$ by $x = AT_{\hat{X}} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1/2 & 0 \end{pmatrix}$
 $\implies b_{Y^2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} V_2 \\ V_2 \\ 0 \end{pmatrix} = \begin{pmatrix} V_2 \\ V_2 \\ 0 \end{pmatrix}$

Projection onto a Line:
Suppose
$$V = Span \{v\}$$
.
Then $V = Col(A)$ where $A = v$ (one column).
 $A^{T}A = v^{T}v = v \cdot v$ is a 1×1 matrix
 $A^{T}b = v^{T}b = v \cdot b$
So the normal equation becomes
 $A^{T}A\hat{x} = A^{T}b \longrightarrow (v \cdot v)\hat{x} = v \cdot b$
Then $\hat{x} = \frac{v \cdot b}{v \cdot v} \longrightarrow by = A\hat{x} = \frac{v \cdot b}{v \cdot v}v$

Projection onto the Line Span first

$$b_{V} = \frac{V \cdot b}{V \cdot V} V$$
Eq: Project $b = (b)$ onto $V = Span S(1)S$.

$$b_{V} = \frac{(1) \cdot (b)}{(1) \cdot (b)} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad b \\ b \end{pmatrix}$$
Eq: Compute b_{V} where

$$V = Span \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\} \qquad b = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
Note V is a plane in $\mathbb{R}^{3} \longrightarrow V^{2}$ is a line.
In fact, $V = Nul(1 + 1) \implies V^{2} = Span S(1)S$.
Much easier to compute $b_{V} = proj$ who a line.

$$b_{V} = \frac{b_{V}V}{v \cdot v} v = \frac{\begin{pmatrix} -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}}{(1) \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}} = \frac{-3}{3} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
Hut: Ask yourself: is it as to compute
 $b_{V} = b - b_{V^{2}} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$

NB: You get the same answer if you express
V as a column space or a null space! (Ar
as a Col/Null space of a different matrix.)

$$b_{V} = (ilosest vector to b in V)$$

doesn't care how you describe V!
Eg: Let $b = \binom{1}{6}$ and $V = Col(\binom{1}{1} \binom{1}{5})$.
 $b_{V} = \frac{1}{\binom{1}{5}} (p.7.)$
Also $V = Nul(1 - 1 o)$ (p.4)
 $\Rightarrow b_{V} = \binom{\binom{1}{5}}{\binom{1}{5}} \binom{1}{5} = \frac{1}{5} \binom{1}{5}$
 $\Rightarrow b_{V} = b - b_{VL} = \frac{1}{5} \binom{1}{5}$ again $\sqrt{}$