The Big Picture

Last time we discussed orthogonality of the 1 subspaces Here is ^a summary

 $NB:$ The dimensions match up with dim V+don V^{\perp} =n= don N ul (A) + don $Row(A) = n$ dm Nul (A^{\top}) +din Col $(A) = m$

Implzit Equations, Revisited

\nRecall: Nu1(A)
$$
\frac{Pv}{P}
$$
, Spec 1 v_3 , v_{n-7}

\ntakes the implicit equation $Ax=0$

\nand generates the parametric form

\n $x = a_1v_1 + \cdots + a_{n-r}v_{n-r}$, $a_3-a_{n-r} =$ parameters

\nOrthogonal complements let us go the other way!

\n(.)+ turns implicit into parametric 2 v_1x_2 -versa.

\n|u1(A)^+= Row(A)

\nCo1(A)^+= Nu1(A^+)

Recipe: To produce implicit equations for Coll(A):
\n(1) Find PVF for Nul(A^T):
\n
$$
Null (AT) PVE0 (par\{v_{1},...,v_{n-1}\})
$$
\n
$$
I = Span\{v_{1},...,v_{n-1}\}
$$
\n
$$
= Nul(AT) + \sum_{n=1}^{N} V_{n-1} = Nul(AT) + \sum_{n=1}^{N} V_{n-1} = Nul(-V_{1}^{T} - V_{n-1}^{T})
$$

Null Space:	Diff	Glumn Space:
Implizif form	John require	Geometric form
Implizif form	1	
Like: easy to check	than I ⁻	
Like: easy to check	than I ⁻	
He's case of: $Ax=0$		

Eg: Find an implicit equation for the plane
\n
$$
V = \text{Span} \{(\begin{array}{c} 1 \\ 1 \end{array})(\begin{array}{c} 1 \\ 5 \end{array})\}
$$

\n $V^{\perp} = N \cdot u \cdot (\begin{array}{ccc} 1 \\ 1 \end{array} + \begin{array}{ccc} 1 \\ 0 \end{array}) \xrightarrow{Peyn} \{(\begin{array}{c} 1 \\ 5 \end{array})\}$
\n $= \sqrt{1 - \text{Span} \{(\begin{array}{c} 1 \\ 1 \end{array})(\begin{array}{c} 1 \\ 0 \end{array})\}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot$

Now this easy to check if a vector is in V:
\n
$$
-\frac{x}{x}+x_2=0
$$
 means
$$
\frac{x}{x}=\frac{x_2}{x}
$$
 so that
$$
\frac{3}{x}=\frac{3}{x}
$$
 so that
$$
\frac{3}{x}=\frac{3}{x}
$$

Orthogonal Projections Recall: to find the best approximate solution of Ax = b, want to find the closest vector b to b in $Col(A) = \{Ax : x \in \mathbb{R}^n\}$ $\int_{\mathcal{A}} \mathcal{A} \cdot b - b$ is orthogonal to $\int_{\mathcal{A}} \mathcal{A} \cdot b$ $b-b\in Col(A)^{\perp}=\mathcal{N}ul(A^{\perp})$ [demo] Def: Let V be a subspace of \mathbb{R}^n and be \mathbb{R}^n . The orthogonal projection of ^b onto V is the closest vector by in V to b. It is characterized by b br ^e v The orthogonal decomposition of b relative to V is $P = P^A + P^A$ Here $b_{v1} = b - b_v \in V^{\perp}$. Note that $p - p^{\Lambda_T} = p^{\Lambda} e \Lambda = (\Lambda_T)_+$ So that b_{v1} is projection onto V^{\perp} .

In other words the orthogonal decomposition is $b = \begin{pmatrix} 1 & b & c & d \end{pmatrix} + \begin{pmatrix} 1 & b & d \end{pmatrix} + \begin{pmatrix} 1 & b & d \end{pmatrix}$ to b in V by H to b in V^{\perp} $b = \left(\begin{array}{cc} \rho \text{ operator of } b \\ \text{order } b \end{array} \right)$ projection of b onto Vt [demos] How to compute br? Step O: Write V as a column space or a null space.

 $V = G(A)$: then $V^{\perp} = N \omega(A^{T})$, so $b-b\vee c$ $N\triangle (A^T) \implies A^T(b-b\vee) = O$ If brecol(A) then $by = A\hat{x}$ for $\hat{x} \in \mathbb{R}^n$: $A^T(b-A\hat{x})=0 \implies A^T b - A^T A\hat{x}=0$ \Rightarrow ATA $x = A^{T}b$ Solve this equation for $\hat{x} \rightarrow b\hat{v} = A\hat{x}$

Eg Let ⁵ ¹ and ^V Col ^A Find br the orthogonal projection of b to V We set up the equations ATAx̅ AIb ATA i products Atb 8 i In augmented matrix form ATAx̅ ATb is 1 31 1 I so br Ax̅ E demo Check but ^b br columns of A i ⁰ ¹⁶¹ ⁰ biteCollat Distance from V 1lb bull I ball ¹¹¹ Orthogonal Decomposition f

Proceedure: To compute the orthogonal projection by of b onto V=6/(A):

\n(1) Solve the equation ATA
$$
\hat{x} = A^{T}b
$$

\n(2) by = A \hat{x} for any solution \hat{x} .

\nThen by $x = b - by$, and the orthogonal decomposition of b relative to V is $b = by + by +$.

\nThe distance from b to V is [by +1].

\nFind the orthogonal decomposition of b relatively independent function of b.

 (2) by $A\hat{x}$ for any solution. Let's use the particular solution: $b_v = \begin{pmatrix} \frac{1}{2} & \frac{-1}{1} & \frac{-1}{1} \\ \frac{1}{1} & -1 & \frac{-1}{1} \end{pmatrix} \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $NB:$ $b_v = b$: what does that mean? b was already in $V!$ More on this later. Def: The normal equation of $Ax=b$ is $A^{T}A^{T}A^{-}A^{T}A$ $Fact: ATAx=AB$ is always consistent! (Otherwise the Procedure wouldn't work.) W_{hy} ? Γ claim $G(\mathsf{AF}) = G(\mathsf{FA})$. From before: $Nul(A) = Nul(A^TA)$ Take $(-)^{L}$: $Nu((A)^{L} = Nu(A)^{L})^{L}$ $Nu(A)^+=Row(A) = Gl(A^T)$ $Nu(A[A])^{\perp} = \text{Rad}(A^{T}A) = \text{Gal}(A^{T}A)^{\perp}$ $= G(XA)$ Since A^T be Col (A^T) = Col $(A^T A)$, the equation $A^T A \hat{x} = A^T b$ is consistent.

$$
NB: IP \leq and \leq both solve
$$
\n
$$
A^T A x = A^T x = A^T A y
$$
\n
$$
A^n A x = A^T A y = A^T A (x-y)
$$
\n
$$
\Rightarrow x - g \in Nu (A^T A)^{\frac{Faf}{2}} Nu (A) \Rightarrow A(x - y) = 0
$$
\n
$$
\Rightarrow b_v = A x = A g. So any soln of A^T A x = A^T b \text{ const.}
$$

Now we know how to project onto a column space. Uhat if $V = Nu(A)$? Then $V^{\perp} = N\mathcal{A}(\mathcal{A}) = R_{\infty}(\mathcal{A}) = C_{0}(\mathcal{A}^{T})$. So first compute $by = \rho \dot{\rho}$ ector onto a col space, then $b_v = b - b_v$.

Paædure: To compute the orthogonal projection
by of b onto V=Null(A):
(1) Compute by = projection onto V⁺=
$$
GI(A^T)
$$

(2) by = b-bv⁺

Use the symmetry in the orthogonal decomposition $b = b + b + d$ to your advantage

Eg: Project b-
$$
\begin{pmatrix} 1 \\ 8 \end{pmatrix}
$$
 onto V= Null $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
First the project onto Col $\begin{pmatrix} 1 & 1 \\ 1 & 6 \end{pmatrix}$: A 2 when a At
 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ = $\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 $\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 12 \end{pmatrix}$

 $\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 12 \end{pmatrix}$

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 12 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 12 \end{pmatrix}$

Projection onto a Line:

\nSuppose
$$
V = Span\{v\}
$$
.

\nThen $V = Co(A)$ where $A = v$ (one column).

\n $ATA = vTv = v\cdot v$ is a 1×1 matrix

\n $ATA = vTv = v\cdot b$

\nso the normal equation becomes

\n $ATA \approx ATb \implies (vv) \times x = vb$

\nThen $\hat{x} = \frac{v \cdot b}{v \cdot v} \implies by = As = \frac{v \cdot b}{v \cdot v} \implies v = \frac{v \cdot b}{v \cdot v}$

Projection onto the Line Span $\{v\}$	
$b_v = \frac{v \cdot b}{v \cdot v} v$	
E_8 : Project $b=(b)$ onto $V = Span \{ (1)\}$.	
$b_v = \frac{((1)(b)}{((1)(b))}((1)) = \frac{1}{2}((1))$	
$b_v = \frac{((1)(b)}{((1)(b))}((1)) = \frac{1}{2}((1))$	
E_9 : Complete by where	
$V = Span \{ (\frac{1}{2}), (\frac{1}{2})\}$	$b = (\frac{2}{4})$
$W = \frac{1}{2} \cdot \frac{1}{2} \$	

NB You get the same answer if you express as ^a column space or ^a null space Or as ^a Cal Nut space of ^a different matrix br closest rector to ^b in ^V doesn't care how you describe V1 Eg Let ⁵ 1 and V Col br b ^p⁷ Also V Nal ^I ¹ ⁰ ^p 4 Vt Col t is ^a line but I ^S IH br b but b again