Subspaces

 Ori entation: So far, to a (coefficient) matrix A we have associated two linear spaces thru ϵ · Span fcols of AS = {all b making $Ax = b$ consistent}

 \bullet Solutions of $Ax=O$ = Span syectors from PVF3

Today we facus on linear spaces thru S = subspaces on their own, and begin discussing different ways of describing them

 $2x+y+127=0$ Eg $(h3)^2$ The equations $2 + 2y + 9z = 0$ are an implicit description of a line in \mathbb{R}^3 . The PVF of the solution set is $\{S_{\alpha} \}_{\alpha=1}^{N}$ this is a parametric description of the same line! Fast-forward: Fsame picture

Subspaces Spans are and are spans subspaces ->Likewise with solutions of homogeneous systems! Why the new vocabulary word? ¹ Subspaces allow us to discuss spans without

Computing a spanning set:

\n(2) If allows us to reason geometrically about the shape itself; independent of any particular description.

\nUse also get a criterion for a subset to be a span.

\nDet: A subset of IR is any collection of points.

\nEq: (a)

\n(b)

\n(c)

\n(d)

\n(e)

\n(f(x,y): x²+y² = 1?

\n(g)

\n(h)

\n(i) Llosed under +1 If
$$
u, v \in V
$$
 then $u \neq v$

\n(j) Llosed under scalar x]

\nIf $u \in V$ and $c \in R$ then $c \neq 0$

\n(k) $c \neq 0$

\nThese conditions characterize linear spaces containing 0 among all subsets.

\nINB: IF V is a subspace and v \neq V then O=0v

\nis in V by (2), so (3) ω means V is nonempty.

E₃: In the subset above:
\n(a) fails (1), (2), (3)
\n(b) fails (2) : (1)6V but
$$
-(-1)
$$
%V
\n(c) fails (1) : (a), (1)6V but (1)4V
\nHere are two "principal" examples of subspaces:
\nE₃: {03 R a subspace
\n(1) 0+0=06 {03 V
\n(2) c 0=06 {03 V
\n(3) 06{03
\n(3) 06{03
\n13) 06{03
\n14) 060
\n(5) 06{03
\n(6) 06{03
\n(7) 060{03
\n(8) 06{03
\n(9) 06{03
\n(10) 060{03
\n(11) 060{03
\n(12) 060{03
\n(13) 06{03
\n(14) 060{03
\n(15) 060{03
\n(16) 060{03
\n(17) 060{03
\n(18) 060{03
\n(19) 060{03
\n(10) 060{03
\n(11) 060{0

Eg: IR's all vectors of size
$$
n_5
$$
 is a subspace
\n(i) The sum of two vectors is a vector.
\n(2) A scalar times a vector is a vector
\n(3) 0 is a vector.
\nNB IRⁿ= $\sum_{i=1}^{n} (e_{i}, e_{i}, ..., e_{n})$
\n $e_{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $e_{i} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$... $e_{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

defining condition Eg V ^x ^y ^z xty ^z The defining condition tells you if ^x ^y ^z is in V or not ¹ We have to show that if ^u ^x ^y ^z ell and ^x ^y ^z EV then their sum is in V Know Xity ²¹ Xity Zz defining conditions for ^a Utr ^x tXz y tya Zitz Want Ktxa tly ty zitze defining condition for utv Since utr satisfies the defining condition never ² We have to show that if ^x ^y ^z EV and CER then ^c ^x ^y ^z ox.cy.cz eV Know xty ^t Want extcy CZ Since cu satisfies the defining condition cuEV ³ Is 8 eV Does it satisfy the defining condition 0 0 0 Since satisfies the 3 criteria it is ^a subspace

NB: This means V is a span!
How to find a spanning set?
How do not have an this later.
J. order to show that a subset is not a subset of the axioms.
Subspace, you just have to produce one
countercxample to one of the axioms.
Lefting condition
Eg: V = { (x, y) : \times 20, $y \ge 0$?
(2) (5) $\sqrt{x} \ge 0$, $y \ge 0$?
On the following condition
For a subspace by verifying the axioms – but you'll be an integer by many a counterexample.
For a subspace by finding a counterexample.
For the defining condition for a vector of the box.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph of the x-axis.
For a vertex in the graph

\n- (1) We need to show that if
$$
C_{4}
$$
 + \cdots + C_{4} or $+ \cdots$ or 3 or 1 . The sum of the line 1 to 1

Def: The column space of a matrix A is the span of its columns.
\nNotation:
$$
Col(A) = SpaS, cos \neq A
$$
?
\nThis is a subspace of \mathbb{R}^m m = # roots
\n(each column has m entries)
\n $cos \neq 0$
\nSince a column piece is a subspace.
\nSubspace, a column space is a subspace.
\nE₃: $Col\{\frac{1}{3} \pm \frac{1}{6} \cdot \frac{1}{3} \} = Span\{\frac{1}{3}\} \{\frac{1}{3}\} \{\frac{1}{3}\}$?
\nThus $Col\{\frac{1}{3} \pm \frac{1}{6} \cdot \frac{1}{3} \} = Span\{\frac{1}{3}\} \{\frac{1}{3}\} \{\frac{1}{3}\}$?
\nThus $Col\{\frac{2}{3}\}, \{\frac{3}{3}\} \} = Col\{\frac{2}{3} \cdot \frac{1}{3}\}$

 $NB: |G(A)=$ { $Ax: x6$ ||2 because Ax is just a LC of the cols of A

Translation of the column picture criterion for consistency Arb ^B consistent becol.LA b can be written as Ax becol A Def The null space of ^a matrix A is the solution set of Ax O Notation Nal ^A ER Ax ⁰ This is ^a subspace of IR ⁿ columns ⁿ variables and Nul A is ^a solution set row picture Fact Nal A is ^a subspace Of course we also know Nulla is ^a span but we can verify this directly Proof The defining condition for renal A is that Av ^O ¹ Say ^u renal ^A Is atvenul ^A Alutu AutAv ⁰ ⁰ ⁰

 $\sqrt{}$

$$
(2) Say u eN u |A) and c eR.
$$

Is cueN u |A) ?
Al cu = c(Au) = c O = 0
(3) Is $0eN u |A|$?
AO = 0

This is an example of ^a subspace that we've described implicitly as ^a solution set of ^a system of homogeneous equations

Eg: Write Nul(A) as a span for
\n
$$
A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{bmatrix}
$$

\nThis means solving Ax=0 (homogeneous
equation).

$$
\begin{bmatrix}\n1 & 2 & 2 & 1 & 0 \\
2 & 4 & 1 & -1 & 0\n\end{bmatrix}\n\xrightarrow{RREF} \begin{bmatrix}\n1 & 2 & 0 & -1 \\
0 & 0 & 1 & 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nx_1 = -2x_2 + x_4 \\
x_2 = x_4 \\
x_4 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_2 = x_4 \\
14x_3 = x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n8x_1 = -2x_2 + x_4 \\
14x_3 = x_4\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 0 & 0 \\
1 &
$$

Explicit vs Parametric form:

\n\n- $$
C_{0}(A)
$$
 is a span:
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{2}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{3}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{4}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$
\n- $C_{5}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{6}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{7}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{8}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{9}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- $C_{1}(\frac{1}{3} \times \frac{7}{6}) = \frac{1}{16}$ (by 1, 1)
\n- <

E₃:
$$
V = \{ (x, y, z) : x + y = z \}
$$

\nThis is defined by the equation $x + y = z$.
\nrewnite: $x + y = z = 0$
\n $\rightarrow V = Nul \left[1 - 1 \right]$
\nE₃: $V = \{ \begin{pmatrix} 3a + b \\ a - b \end{pmatrix} : a, b \in \mathbb{R} \}$
\nThis is described by parentheses. Rewrite:
\n $\begin{pmatrix} 3a + b \\ a - b \end{pmatrix} = a \begin{pmatrix} 3 \\ b \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \end{pmatrix} = G \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$
\n $\rightarrow V = Span \{ \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \} = G \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$
\nThis is also have you should verify that a subset
\nis a subspace.
\nOf course, if V is not a subspace then you can't
\nwrite it as: $Gl(A)$ or $Nul(A)$. In this case you
\nshould check that it fails one of the axioms.

Eg: Is
$$
V=f(x,y,z):x+y=z+13 = subspace?
$$

Na, (P3) $lnis: O+O+O+1, so O#V.$